1.
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
by Shimatani, Zenpei
Nature biotechnology, 2017-05, Vol.35 (5), p.441-443

2.
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
by Woo, Je Wook
Nature biotechnology, 2015-11, Vol.33 (11), p.1162-1164

3.
DNA targeting specificity of RNA-guided Cas9 nucleases
by Hsu, Patrick D
Nature biotechnology, 2013-09, Vol.31 (9), p.827-832

4.
Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
by Chu, Van Trung
Nature biotechnology, 2015-05, Vol.33 (5), p.543-548

5.
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
by Gaj, Thomas
Trends in biotechnology (Regular ed.), 2013, Vol.31 (7), p.397-405

6.
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
by Doench, John G
Nature biotechnology, 2016-02, Vol.34 (2), p.184-191

7.
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
by Mali, Prashant
Nature biotechnology, 2013-09, Vol.31 (9), p.833-838

8.
Genome editing at the crossroads of delivery, specificity, and fidelity
by Maggio, Ignazio
Trends in biotechnology (Regular ed.), 2015, Vol.33 (5), p.280-291

9.
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
by Maruyama, Takeshi
Nature biotechnology, 2015-05, Vol.33 (5), p.538-542

10.
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
by Jiang, Wenyan
Nature biotechnology, 2013-03, Vol.31 (3), p.233-239

11.
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
by Cho, Seung Woo
Nature biotechnology, 2013-03, Vol.31 (3), p.230-232

12.
Photoactivatable CRISPR-Cas9 for optogenetic genome editing
by Nihongaki, Yuta
Nature biotechnology, 2015-07, Vol.33 (7), p.755-760

13.
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
by Pattanayak, Vikram
Nature biotechnology, 2013-09, Vol.31 (9), p.839-843

14.
Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells
by Weinberg, Benjamin H
Nature biotechnology, 2017-05, Vol.35 (5), p.453-462

15.
Amyloid polymorphism: structural basis and neurobiological relevance
by Tycko, Robert
Neuron (Cambridge, Mass.), 2015-05-06, Vol.86 (3), p.632-645

16.
Genome Engineering with Targetable Nucleases
by Carroll, Dana
Annual review of biochemistry, 2014-06-02, Vol.83 (1), p.409-439

17.
Genetic engineering of human pluripotent cells using TALE nucleases
by Jaenisch, Rudolf
Nature biotechnology, 2011, Vol.29 (8), p.731-734

18.
Engineering microbial consortia: a new frontier in synthetic biology
by Brenner, Katie
Trends in biotechnology (Regular ed.), 2008, Vol.26 (9), p.483-489

19.
Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus
by Dedrick, Rebekah M
Nature medicine, 2019-05, Vol.25 (5), p.730-733

20.
Plant genome engineering with sequence-specific nucleases
by Voytas, Daniel F
Annual review of plant biology, 2013, Vol.64 (1), p.327-350
