1.
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
by Alipanahi, Babak
Nature biotechnology, 2015-08, Vol.33 (8), p.831-838

2.
MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
by Steinegger, Martin
Nature biotechnology, 2017-11, Vol.35 (11), p.1026-1028

3.
Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood
by Berger, Simon A
Systematic biology, 2011-05-01, Vol.60 (3), p.291-302

4.
Protein structure prediction from sequence variation
by Marks, Debora S
Nature biotechnology, 2012-11, Vol.30 (11), p.1072-1080

5.
Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data
by Zhang, Chaolin
Nature biotechnology, 2011-07, Vol.29 (7), p.607-614

6.
Relating protein pharmacology by ligand chemistry
by Irwin, John J
Nature biotechnology, 2007-02, Vol.25 (2), p.197-206

7.
Proteomic analysis of post-translational modifications
by Mann, Matthias
Nature biotechnology, 2003-03, Vol.21 (3), p.255-261

8.
A proteomics approach to understanding protein ubiquitination
by Gygi, Steven P
Nature biotechnology, 2003-08, Vol.21 (8), p.921-926

9.
Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation
by Marcotte, Edward M
Nature biotechnology, 2007-02, Vol.25 (1), p.117-124

10.
Computational prediction of proteotypic peptides for quantitative proteomics
by Kuster, Bernhard
Nature biotechnology, 2007-02, Vol.25 (1), p.125-131

11.
Deep learning for regulatory genomics
by Park, Yongjin
Nature biotechnology, 2015-08, Vol.33 (8), p.825-826

12.
Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites
by Overall, Christopher M
Nature biotechnology, 2008-06, Vol.26 (6), p.685-694

13.
Constitutional Mutations in RTEL1 Cause Severe Dyskeratosis Congenita
by Walne, Amanda J
American journal of human genetics, 2013-03-07, Vol.92 (3), p.448-453

14.
A method for the comprehensive proteomic analysis of membrane proteins
by Yates, John R
Nature biotechnology, 2003-05, Vol.21 (5), p.532-538

15.
An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets
by Schwartz, Daniel
Nature biotechnology, 2005-11, Vol.23 (11), p.1391-1398

16.
Exploiting the mosaic structure of trans -acyltransferase polyketide synthases for natural product discovery and pathway dissection
by Hochmuth, Thomas
Nature biotechnology, 2008-02, Vol.26 (2), p.225-233

17.
MetaPocket: a meta approach to improve protein ligand binding site prediction
by Huang, Bingding
Omics (Larchmont, N.Y.), 2009-08, Vol.13 (4), p.325-330

18.
iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples
by Kabir, Muhammad
Molecular genetics and genomics : MGG, 2015-08-30, Vol.291 (1), p.285-296

19.
Identification of post-translational modifications by blind search of mass spectra
by Tanner, Stephen
Nature biotechnology, 2005-12, Vol.23 (12), p.1562-1567

20.
Characterization of the human heart mitochondrial proteome
by Glenn, Gary M
Nature biotechnology, 2003-03, Vol.21 (3), p.281-286
