schliessen

Filtern

 

Bibliotheken

Edgeless and purely gate-defined nanostructures in InAs quantum wells

Nanostructures in InAs quantum wells have so far remained outside of the scope of traditional microfabrication techniques based on etching. This is due to parasitic parallel conduction arising from charge carrier accumulation at the physical edges of samples. Here, we present a technique which enabl... Full description

Journal Title: Applied Physics Letters 24 December 2018, Vol.113(26)
Main Author: Mittag, Christopher
Other Authors: Karalic, Matija , Lei, Zijin , Tschirky, Thomas , Wegscheider, Werner , Ihn, Thomas , Ensslin, Klaus
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0003-6951 ; E-ISSN: 1077-3118 ; DOI: 10.1063/1.5055359
Link: http://dx.doi.org/10.1063/1.5055359
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: aip_complete10.1063/1.5055359
title: Edgeless and purely gate-defined nanostructures in InAs quantum wells
format: Article
creator:
  • Mittag, Christopher
  • Karalic, Matija
  • Lei, Zijin
  • Tschirky, Thomas
  • Wegscheider, Werner
  • Ihn, Thomas
  • Ensslin, Klaus
subjects:
  • Semiconductors
ispartof: Applied Physics Letters, 24 December 2018, Vol.113(26)
description: Nanostructures in InAs quantum wells have so far remained outside of the scope of traditional microfabrication techniques based on etching. This is due to parasitic parallel conduction arising from charge carrier accumulation at the physical edges of samples. Here, we present a technique which enables the realization of quantum point contacts and quantum dots in two-dimensional electron gases of InAs purely by electrostatic gating. Multiple layers of top gates separated by dielectric layers are employed. Full quantum point contact pinch-off and measurements of Coulomb-blockade diamonds of quantum dots are demonstrated.
language: eng
source:
identifier: ISSN: 0003-6951 ; E-ISSN: 1077-3118 ; DOI: 10.1063/1.5055359
fulltext: fulltext
issn:
  • 0003-6951
  • 1077-3118
  • 00036951
  • 10773118
url: Link


@attributes
ID1262235470
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid10.1063/1.5055359
sourceidaip_complete
recordidTN_aip_complete10.1063/1.5055359
sourcesystemOther
pqid2101690124
display
typearticle
titleEdgeless and purely gate-defined nanostructures in InAs quantum wells
creatorMittag, Christopher ; Karalic, Matija ; Lei, Zijin ; Tschirky, Thomas ; Wegscheider, Werner ; Ihn, Thomas ; Ensslin, Klaus
ispartofApplied Physics Letters, 24 December 2018, Vol.113(26)
subjectSemiconductors
descriptionNanostructures in InAs quantum wells have so far remained outside of the scope of traditional microfabrication techniques based on etching. This is due to parasitic parallel conduction arising from charge carrier accumulation at the physical edges of samples. Here, we present a technique which enables the realization of quantum point contacts and quantum dots in two-dimensional electron gases of InAs purely by electrostatic gating. Multiple layers of top gates separated by dielectric layers are employed. Full quantum point contact pinch-off and measurements of Coulomb-blockade diamonds of quantum dots are demonstrated.
languageeng
source
identifier
version5
lds50peer_reviewed
links
openurl$$Topenurl_article
backlink$$Uhttp://dx.doi.org/10.1063/1.5055359$$EView_source_record
openurlfulltext$$Topenurlfull_article
search
creatorcontrib
0Mittag, Christopher
1Karalic, Matija
2Lei, Zijin
3Tschirky, Thomas
4Wegscheider, Werner
5Ihn, Thomas
6Ensslin, Klaus
titleEdgeless and purely gate-defined nanostructures in InAs quantum wells
subjectSemiconductors
general
0English
1© 2018 Author(s) (AIP)
2AIP Publishing LLC
3AIP Journals
410.1063/1.5055359
sourceidaip_complete
recordidaip_complete10.1063/1.5055359
issn
00003-6951
11077-3118
200036951
310773118
rsrctypearticle
searchscopeaip_journals
scopeaip_journals
descriptionNanostructures in InAs quantum wells have so far remained outside of the scope of traditional microfabrication techniques based on etching. This is due to parasitic parallel conduction arising from charge carrier accumulation at the physical edges of samples. Here, we present a technique which enables the realization of quantum point contacts and quantum dots in two-dimensional electron gases of InAs purely by electrostatic gating. Multiple layers of top gates separated by dielectric layers are employed. Full quantum point contact pinch-off and measurements of Coulomb-blockade diamonds of quantum dots are demonstrated.
creationdate2018
startdate20181224
enddate20181224
addtitleApplied Physics Letters
lsr40Applied Physics Letters, 24 December 2018, Vol.113 (26)
citationvol 113 issue 26
lsr30VSR-Enriched:[orcidid, pqid]
sort
titleEdgeless and purely gate-defined nanostructures in InAs quantum wells
authorMittag, Christopher ; Karalic, Matija ; Lei, Zijin ; Tschirky, Thomas ; Wegscheider, Werner ; Ihn, Thomas ; Ensslin, Klaus
creationdate20181224
lso0120181224
facets
frbrgroupid7915902274493442825
frbrtype5
newrecords20190102
languageeng
creationdate2018
topicSemiconductors
collectionAIP Journals
prefilterarticles
rsrctypearticles
creatorcontrib
0Mittag, Christopher
1Karalic, Matija
2Lei, Zijin
3Tschirky, Thomas
4Wegscheider, Werner
5Ihn, Thomas
6Ensslin, Klaus
jtitleApplied Physics Letters
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Mittag
1Karalic
2Lei
3Tschirky
4Wegscheider
5Ihn
6Ensslin
aufirstChristopher ; Matija ; Zijin ; Thomas ; Werner ; Thomas ; Klaus
auinitC
au
0Mittag, Christopher
1Karalic, Matija
2Lei, Zijin
3Tschirky, Thomas
4Wegscheider, Werner
5Ihn, Thomas
6Ensslin, Klaus
atitleEdgeless and purely gate-defined nanostructures in InAs quantum wells
jtitleApplied Physics Letters
stitleAppl. Phys. Lett.
risdate20181224
volume113
issue26
issn0003-6951
eissn1077-3118
formatjournal
genrearticle
ristypeJOUR
abstractNanostructures in InAs quantum wells have so far remained outside of the scope of traditional microfabrication techniques based on etching. This is due to parasitic parallel conduction arising from charge carrier accumulation at the physical edges of samples. Here, we present a technique which enables the realization of quantum point contacts and quantum dots in two-dimensional electron gases of InAs purely by electrostatic gating. Multiple layers of top gates separated by dielectric layers are employed. Full quantum point contact pinch-off and measurements of Coulomb-blockade diamonds of quantum dots are demonstrated.
pubAIP Publishing LLC
doi10.1063/1.5055359
orcidid0000-0002-9808-1501
date2018-12-24