Sub-sampled Newton methods
Journal Title: | Mathematical programming 2018-11-16, Vol.174 (1-2), p.293-326 |
Main Author: | Roosta-Khorasani, Farbod |
Other Authors: | Mahoney, Michael W |
Format: |
![]() |
Language: |
English |
Subjects: | |
Publisher: | Berlin/Heidelberg: Springer Berlin Heidelberg |
ID: | ISSN: 0025-5610 |
Zum Text: |
SendSend as email
Add to Book BagAdd to Book Bag
Staff View

recordid: | cdi_proquest_journals_2134087418 |
title: | Sub-sampled Newton methods |
format: | Article |
creator: |
|
subjects: |
|
ispartof: | Mathematical programming, 2018-11-16, Vol.174 (1-2), p.293-326 |
description: | For large-scale finite-sum minimization problems, we study non-asymptotic and high-probability global as well as local convergence properties of variants of Newton’s method where the Hessian and/or gradients are randomly sub-sampled. For Hessian sub-sampling, using random matrix concentration inequalities, one can sub-sample in a way that second-order information, i.e., curvature, is suitably preserved. For gradient sub-sampling, approximate matrix multiplication results from randomized numerical linear algebra provide a way to construct the sub-sampled gradient which contains as much of the first-order information as possible. While sample sizes all depend on problem specific constants, e.g., condition number, we demonstrate that local convergence rates are problem-independent . |
language: | eng |
source: | |
identifier: | ISSN: 0025-5610 |
fulltext: | no_fulltext |
issn: |
|
url: | Link |
@attributes |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PrimoNMBib |
|