schliessen

Filtern

 

Bibliotheken

Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining

Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joinin... Full description

Journal Title: Nature biotechnology 2015-05, Vol.33 (5), p.538-542
Main Author: Maruyama, Takeshi
Other Authors: Dougan, Stephanie K , Truttmann, Matthias C , Bilate, Angelina M , Ingram, Jessica R , Ploegh, Hidde L
Format: Electronic Article Electronic Article
Language: English
Subjects:
Publisher: United States: Nature Publishing Group
ID: ISSN: 1087-0156
Link: https://www.ncbi.nlm.nih.gov/pubmed/25798939
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: cdi_proquest_miscellaneous_1701479884
title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
format: Article
creator:
  • Maruyama, Takeshi
  • Dougan, Stephanie K
  • Truttmann, Matthias C
  • Bilate, Angelina M
  • Ingram, Jessica R
  • Ploegh, Hidde L
subjects:
  • Animals
  • Cell Line
  • coenzymes (carbohydrates)
  • CRISPR-Cas Systems - genetics
  • DNA Breaks, Double-Stranded - drug effects
  • DNA End-Joining Repair - genetics
  • DNA Ligase ATP
  • DNA Ligases - genetics
  • DNA repair
  • DNA Repair - genetics
  • enzymes
  • Forecasts and trends
  • Gene mutations
  • Genetic engineering
  • Genetic Engineering - methods
  • Genetic research
  • Genome
  • Homologous Recombination - genetics
  • Identification and classification
  • Mice
  • Pyrimidines - administration & dosage
  • Schiff Bases - administration & dosage
  • Zinc Fingers - genetics
ispartof: Nature biotechnology, 2015-05, Vol.33 (5), p.538-542
description: Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator-like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
language: eng
source:
identifier: ISSN: 1087-0156
fulltext: no_fulltext
issn:
  • 1087-0156
  • 1546-1696
url: Link


@attributes
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
RANK2.8557472
LOCALfalse
PrimoNMBib
record
control
sourceidgale_opena
recordidTN_cdi_proquest_miscellaneous_1701479884
sourceformatXML
sourcesystemPC
galeidA415562306
sourcerecordidA415562306
originalsourceidFETCH-LOGICAL-1699t-5fc69437937ce85f8aedb5bb3e6e68abeb9c59894ea59b03496ccd061a0db86c0
addsrcrecordideNqNk-GLFCEYxocouusK-gtioC8F7aYz6ujHY6lr4ehir_oq6rzOuszoNs5Q-9_nsNteW0GHoKK_50EffbPsOUZzjEr-1uthXmKBHmTnmBI2w0ywh2mOeDVDmLKz7EmMG4QQI4w9zs4KWgkuSnGehaU3PajofJMPa8jBWmcceLPLg823PRgXIW_Ahy5t1m6YwO9uWOeL1fL202q2UFHkepc7v3Y6bQc_CX3w69CFNjRhjDn4Ot8E55P2afbIqjbCs8N4kX15_-7z4sPs-uZqubi8no4uhhm1hglSVqKsDHBquYJaU61LYMC40qCFoekKBBQVGpVEMGNqxLBCtebMoIvs4943bMEr14Pc9q5T_U4G5WTtYZDRRyu3pdyOOkqGjKkY2JRihSjSjFpaamR0oYqCFnUyvPqfYagl55ITikHzdGzOqLAMaYFqhYjQRKRrkOT0au-07cO3EeIgOxcNtK3ykNKSuEKYpPfh90AZR4JSUrKEvvwD3YSx9ynjPUUwI9Ud1agWpPM2DL0yk6m8JJhSVpRo8pr_g0qths6Z4MG6tH4ieH0iSMwAP4ZGjTHK5e3q_uzN11P2zW-sHtM3hZi66Jr1EPeSE_wQl-lDjD3Y4xthJKdCkalQ5FQoCX1xiGvUHdRH8Fdl3GVw9DJuUNP_Tlm49m_HnxTnGFI
sourcetypeOpen Access Repository
isCDItrue
recordtypearticle
pqid1680941647
display
typearticle
titleIncreasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
creatorMaruyama, Takeshi ; Dougan, Stephanie K ; Truttmann, Matthias C ; Bilate, Angelina M ; Ingram, Jessica R ; Ploegh, Hidde L
creatorcontribMaruyama, Takeshi ; Dougan, Stephanie K ; Truttmann, Matthias C ; Bilate, Angelina M ; Ingram, Jessica R ; Ploegh, Hidde L
descriptionMethods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator-like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
identifier
0ISSN: 1087-0156
1EISSN: 1546-1696
2DOI: 10.1038/nbt.3190
3PMID: 25798939
languageeng
publisherUnited States: Nature Publishing Group
subjectAnimals ; Cell Line ; coenzymes (carbohydrates) ; CRISPR-Cas Systems - genetics ; DNA Breaks, Double-Stranded - drug effects ; DNA End-Joining Repair - genetics ; DNA Ligase ATP ; DNA Ligases - genetics ; DNA repair ; DNA Repair - genetics ; enzymes ; Forecasts and trends ; Gene mutations ; Genetic engineering ; Genetic Engineering - methods ; Genetic research ; Genome ; Homologous Recombination - genetics ; Identification and classification ; Mice ; Pyrimidines - administration & dosage ; Schiff Bases - administration & dosage ; Zinc Fingers - genetics
ispartofNature biotechnology, 2015-05, Vol.33 (5), p.538-542
rights
0COPYRIGHT 2015 Nature Publishing Group
1Copyright Nature Publishing Group May 2015
lds50peer_reviewed
oafree_for_read
citedbyFETCH-LOGICAL-1699t-5fc69437937ce85f8aedb5bb3e6e68abeb9c59894ea59b03496ccd061a0db86c0
citesFETCH-LOGICAL-1699t-5fc69437937ce85f8aedb5bb3e6e68abeb9c59894ea59b03496ccd061a0db86c0
links
openurl$$Topenurl_article
thumbnail$$Usyndetics_thumb_exl
backlink$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25798939$$D View this record in MEDLINE/PubMed
search
creatorcontrib
0Maruyama, Takeshi
1Dougan, Stephanie K
2Truttmann, Matthias C
3Bilate, Angelina M
4Ingram, Jessica R
5Ploegh, Hidde L
title
0Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
1Nature biotechnology
addtitleNat Biotechnol
descriptionMethods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator-like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
subject
0Animals
1Cell Line
2coenzymes (carbohydrates)
3CRISPR-Cas Systems - genetics
4DNA Breaks, Double-Stranded - drug effects
5DNA End-Joining Repair - genetics
6DNA Ligase ATP
7DNA Ligases - genetics
8DNA repair
9DNA Repair - genetics
10enzymes
11Forecasts and trends
12Gene mutations
13Genetic engineering
14Genetic Engineering - methods
15Genetic research
16Genome
17Homologous Recombination - genetics
18Identification and classification
19Mice
20Pyrimidines - administration & dosage
21Schiff Bases - administration & dosage
22Zinc Fingers - genetics
issn
01087-0156
11546-1696
fulltextfalse
rsrctypearticle
creationdate2015
recordtypearticle
recordideNqNk-GLFCEYxocouusK-gtioC8F7aYz6ujHY6lr4ehir_oq6rzOuszoNs5Q-9_nsNteW0GHoKK_50EffbPsOUZzjEr-1uthXmKBHmTnmBI2w0ywh2mOeDVDmLKz7EmMG4QQI4w9zs4KWgkuSnGehaU3PajofJMPa8jBWmcceLPLg823PRgXIW_Ahy5t1m6YwO9uWOeL1fL202q2UFHkepc7v3Y6bQc_CX3w69CFNjRhjDn4Ot8E55P2afbIqjbCs8N4kX15_-7z4sPs-uZqubi8no4uhhm1hglSVqKsDHBquYJaU61LYMC40qCFoekKBBQVGpVEMGNqxLBCtebMoIvs4943bMEr14Pc9q5T_U4G5WTtYZDRRyu3pdyOOkqGjKkY2JRihSjSjFpaamR0oYqCFnUyvPqfYagl55ITikHzdGzOqLAMaYFqhYjQRKRrkOT0au-07cO3EeIgOxcNtK3ykNKSuEKYpPfh90AZR4JSUrKEvvwD3YSx9ynjPUUwI9Ud1agWpPM2DL0yk6m8JJhSVpRo8pr_g0qths6Z4MG6tH4ieH0iSMwAP4ZGjTHK5e3q_uzN11P2zW-sHtM3hZi66Jr1EPeSE_wQl-lDjD3Y4xthJKdCkalQ5FQoCX1xiGvUHdRH8Fdl3GVw9DJuUNP_Tlm49m_HnxTnGFI
startdate201505
enddate201505
creator
0Maruyama, Takeshi
1Dougan, Stephanie K
2Truttmann, Matthias C
3Bilate, Angelina M
4Ingram, Jessica R
5Ploegh, Hidde L
generalNature Publishing Group
scope
0CGR
1CUY
2CVF
3ECM
4EIF
5NPM
6AAYXX
7CITATION
83V.
97QO
107QP
117QR
127T7
137TK
147TM
157X7
167XB
1788A
1888E
1988I
208AO
218FD
228FE
238FG
248FH
258FI
268FJ
278FK
288G5
29ABJCF
30ABUWG
31AZQEC
32BBNVY
33BENPR
34BGLVJ
35BHPHI
36C1K
37DWQXO
38FR3
39FYUFA
40GHDGH
41GNUQQ
42GUQSH
43HCIFZ
44K9.
45L6V
46LK8
47M0S
48M1P
49M2O
50M2P
51M7P
52M7S
53MBDVC
54P64
55PADUT
56PQEST
57PQQKQ
58PQUKI
59PRINS
60PTHSS
61Q9U
62RC3
637X8
64BOBZL
65CLFQK
sort
creationdate201505
titleIncreasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
authorMaruyama, Takeshi ; Dougan, Stephanie K ; Truttmann, Matthias C ; Bilate, Angelina M ; Ingram, Jessica R ; Ploegh, Hidde L
facets
frbrtype5
frbrgroupidcdi_FETCH-LOGICAL-1699t-5fc69437937ce85f8aedb5bb3e6e68abeb9c59894ea59b03496ccd061a0db86c0
rsrctypearticles
prefilterarticles
languageeng
creationdate2015
topic
0Animals
1Cell Line
2coenzymes (carbohydrates)
3CRISPR-Cas Systems - genetics
4DNA Breaks, Double-Stranded - drug effects
5DNA End-Joining Repair - genetics
6DNA Ligase ATP
7DNA Ligases - genetics
8DNA repair
9DNA Repair - genetics
10enzymes
11Forecasts and trends
12Gene mutations
13Genetic engineering
14Genetic Engineering - methods
15Genetic research
16Genome
17Homologous Recombination - genetics
18Identification and classification
19Mice
20Pyrimidines - administration & dosage
21Schiff Bases - administration & dosage
22Zinc Fingers - genetics
toplevelpeer_reviewed
creatorcontrib
0Maruyama, Takeshi
1Dougan, Stephanie K
2Truttmann, Matthias C
3Bilate, Angelina M
4Ingram, Jessica R
5Ploegh, Hidde L
collection
0Medline
1MEDLINE
2MEDLINE (Ovid)
3MEDLINE
4MEDLINE
5PubMed
6CrossRef
7ProQuest Central (Corporate)
8Biotechnology Research Abstracts
9Calcium & Calcified Tissue Abstracts
10Chemoreception Abstracts
11Industrial and Applied Microbiology Abstracts (Microbiology A)
12Neurosciences Abstracts
13Nucleic Acids Abstracts
14Health & Medical Collection
15ProQuest Central (purchase pre-March 2016)
16Biology Database (Alumni Edition)
17Medical Database (Alumni Edition)
18Science Database (Alumni Edition)
19ProQuest Pharma Collection
20Technology Research Database
21ProQuest SciTech Collection
22ProQuest Technology Collection
23ProQuest Natural Science Collection
24Hospital Premium Collection
25Hospital Premium Collection (Alumni Edition)
26ProQuest Central (Alumni) (purchase pre-March 2016)
27Research Library (Alumni Edition)
28Materials Science & Engineering Collection
29ProQuest Central (Alumni Edition)
30ProQuest Central Essentials
31Biological Science Collection
32ProQuest Central
33Technology Collection
34Natural Science Collection
35Environmental Sciences and Pollution Management
36ProQuest Central Korea
37Engineering Research Database
38Health Research Premium Collection
39Health Research Premium Collection (Alumni)
40ProQuest Central Student
41Research Library Prep
42SciTech Premium Collection
43ProQuest Health & Medical Complete (Alumni)
44ProQuest Engineering Collection
45ProQuest Biological Science Collection
46Health & Medical Collection (Alumni Edition)
47Medical Database
48Research Library
49Science Database
50Biological Science Database
51Engineering Database
52Research Library (Corporate)
53Biotechnology and BioEngineering Abstracts
54Research Library China
55ProQuest One Academic Eastern Edition
56ProQuest One Academic
57ProQuest One Academic UKI Edition
58ProQuest Central China
59Engineering Collection
60ProQuest Central Basic
61Genetics Abstracts
62MEDLINE - Academic
63OpenAIRE (Open Access)
64OpenAIRE
jtitleNature biotechnology
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
au
0Maruyama, Takeshi
1Dougan, Stephanie K
2Truttmann, Matthias C
3Bilate, Angelina M
4Ingram, Jessica R
5Ploegh, Hidde L
formatjournal
genrearticle
ristypeJOUR
atitleIncreasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
jtitleNature biotechnology
addtitleNat Biotechnol
date2015-05
risdate2015
volume33
issue5
spage538
epage542
pages538-542
issn1087-0156
eissn1546-1696
abstractMethods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator-like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
copUnited States
pubNature Publishing Group
pmid25798939
doi10.1038/nbt.3190
tpages9
oafree_for_read