schliessen

Filtern

 

Bibliotheken

Auroral plasma acceleration above Martian magnetic anomalies

Byline: R. Lundin (1), D. Winningham (2), S. Barabash (1), R. Frahm (2), D. Brain (11), H. Nilsson (1), M. Holmstrom (1), M. Yamauchi (1), J. R. Sharber (2), J.-A. Sauvaud (3), A. Fedorov (3), K. Asamura (4), H. Hayakawa (4), A. J. Coates (5), Y. Soobiah (5), C. Curtis (6), K. C. Hsieh (6), M. Grand... Full description

Journal Title: Space science reviews 2007-03-20, Vol.126 (1-4), p.333-354
Main Author: Lundin, R.
Other Authors: Winningham, D. , Barabash, S. , Frahm, R. , Brain, D. , Nilsson, H. , Holmström, M. , Yamauchi, M. , Sharber, J. R. , Sauvaud, J.-A. , Fedorov, A. , Asamura, K. , Hayakawa, H. , Coates, A. J. , Soobiah, Y. , Curtis, C. , Hsieh, K. C. , Grande, M. , Koskinen, H. , Kallio, E. , Kozyra, J. , Woch, J. , Fraenz, M. , Luhmann, J. , Mckenna-Lawler, S. , Orsini, S. , Brandt, P. , Wurz, P.
Format: Electronic Article Electronic Article
Language: English
Subjects:
Publisher: Springer
ID: ISSN: 0038-6308
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: cdi_proquest_miscellaneous_29561807
title: Auroral plasma acceleration above Martian magnetic anomalies
format: Article
creator:
  • Lundin, R.
  • Winningham, D.
  • Barabash, S.
  • Frahm, R.
  • Brain, D.
  • Nilsson, H.
  • Holmström, M.
  • Yamauchi, M.
  • Sharber, J. R.
  • Sauvaud, J.-A.
  • Fedorov, A.
  • Asamura, K.
  • Hayakawa, H.
  • Coates, A. J.
  • Soobiah, Y.
  • Curtis, C.
  • Hsieh, K. C.
  • Grande, M.
  • Koskinen, H.
  • Kallio, E.
  • Kozyra, J.
  • Woch, J.
  • Fraenz, M.
  • Luhmann, J.
  • Mckenna-Lawler, S.
  • Orsini, S.
  • Brandt, P.
  • Wurz, P.
subjects:
  • Magnetic fields
  • Magnetization
  • Mars (Planet)
ispartof: Space science reviews, 2007-03-20, Vol.126 (1-4), p.333-354
description: Byline: R. Lundin (1), D. Winningham (2), S. Barabash (1), R. Frahm (2), D. Brain (11), H. Nilsson (1), M. Holmstrom (1), M. Yamauchi (1), J. R. Sharber (2), J.-A. Sauvaud (3), A. Fedorov (3), K. Asamura (4), H. Hayakawa (4), A. J. Coates (5), Y. Soobiah (5), C. Curtis (6), K. C. Hsieh (6), M. Grande (7), H. Koskinen (8), E. Kallio (8), J. Kozyra (9), J. Woch (10), M. Fraenz (10), J. Luhmann (11), S. Mckenna-Lawler (12), S. Orsini (13), P. Brandt (14), P. Wurz (15) Keywords: aurora; plasma acceleration; Mars magnetic anomalies Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth's discrete aurora not only visualizes the inclination of the Earth's magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas -- field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration -- the localized crustal magnetizations at Mars (Acuna et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA's Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above
language: eng
source:
identifier: ISSN: 0038-6308
fulltext: no_fulltext
issn:
  • 0038-6308
  • 1572-9672
url: Link


@attributes
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
RANK2.2221365
LOCALfalse
PrimoNMBib
record
control
sourceidgale_proqu
recordidTN_cdi_proquest_miscellaneous_29561807
sourceformatXML
sourcesystemPC
galeidA160804174
sourcerecordidA160804174
originalsourceidFETCH-LOGICAL-1511t-98928b6540a74a169012533604df1963b79b1fec3b5b118ce16fa66e84714e1e0
addsrcrecordideNqFkU1P3EAMhkctlVhofwC3nHrLYieT-ZB6WaHSIoG4gMRt5AwOmirJbGeyFfx7Zrs9cSjywbL1Prb1WogzhDUC6POM2KCsAVRtwaj6-YNYYaeb2irdfBQn0BqtwUp8OBIrKFWtWjDH4iTnXwD7EXolvm12KSYaq-1IeaKKvOeREy0hzhX18Q9XN5SWQHM10dPMS_AVzXGiMXD-LD4NNGb-8i-fivvL73cXP-vr2x9XF5vrGjvEpbbGNqZXnQTSklBZwKZrWwXycUCr2l7bHgf2bd_1iMYzqoGUYiM1SkaGU_H1MHeb4u8d58VNIZc7R5o57rJriwcNdPZdYWM7hQZ0Ea4Pwica2YV5iEsiX-KRp-DjzEMo_Q0qMCBRywLgAfAp5px4cNsUJkovDsHtvXSHd7hyitu_wz0XRr9hfFj-OluWhfE_5CtmJ4us
sourcetypeAggregation Database
isCDItrue
recordtypearticle
pqid29561807
display
typearticle
titleAuroral plasma acceleration above Martian magnetic anomalies
creatorLundin, R. ; Winningham, D. ; Barabash, S. ; Frahm, R. ; Brain, D. ; Nilsson, H. ; Holmström, M. ; Yamauchi, M. ; Sharber, J. R. ; Sauvaud, J.-A. ; Fedorov, A. ; Asamura, K. ; Hayakawa, H. ; Coates, A. J. ; Soobiah, Y. ; Curtis, C. ; Hsieh, K. C. ; Grande, M. ; Koskinen, H. ; Kallio, E. ; Kozyra, J. ; Woch, J. ; Fraenz, M. ; Luhmann, J. ; Mckenna-Lawler, S. ; Orsini, S. ; Brandt, P. ; Wurz, P.
creatorcontribLundin, R. ; Winningham, D. ; Barabash, S. ; Frahm, R. ; Brain, D. ; Nilsson, H. ; Holmström, M. ; Yamauchi, M. ; Sharber, J. R. ; Sauvaud, J.-A. ; Fedorov, A. ; Asamura, K. ; Hayakawa, H. ; Coates, A. J. ; Soobiah, Y. ; Curtis, C. ; Hsieh, K. C. ; Grande, M. ; Koskinen, H. ; Kallio, E. ; Kozyra, J. ; Woch, J. ; Fraenz, M. ; Luhmann, J. ; Mckenna-Lawler, S. ; Orsini, S. ; Brandt, P. ; Wurz, P.
descriptionByline: R. Lundin (1), D. Winningham (2), S. Barabash (1), R. Frahm (2), D. Brain (11), H. Nilsson (1), M. Holmstrom (1), M. Yamauchi (1), J. R. Sharber (2), J.-A. Sauvaud (3), A. Fedorov (3), K. Asamura (4), H. Hayakawa (4), A. J. Coates (5), Y. Soobiah (5), C. Curtis (6), K. C. Hsieh (6), M. Grande (7), H. Koskinen (8), E. Kallio (8), J. Kozyra (9), J. Woch (10), M. Fraenz (10), J. Luhmann (11), S. Mckenna-Lawler (12), S. Orsini (13), P. Brandt (14), P. Wurz (15) Keywords: aurora; plasma acceleration; Mars magnetic anomalies Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth's discrete aurora not only visualizes the inclination of the Earth's magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas -- field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration -- the localized crustal magnetizations at Mars (Acuna et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA's Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth -- characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The "inverted V" energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars -- the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars. Author Affiliation: (1) Swedish Institute of Space Physics, Box 812, S-98 128, Kiruna, Sweden (2) Southwest Research Institute, San Antonio, TX, 7228-0510, USA (3) Centre d'Etude Spatiale des Rayonnements, BP-4346, F-31028, Toulouse, France (4) Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamichara, Japan (5) Mullard Space Science Laboratory, University College London, Surrey, RH5 6NT, UK (6) University of Arizona, Tucson, AZ, 85721, USA (7) Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK (8) Finnish Meteorological Institute, Box 503, FIN-00101, Helsinki, Finland (9) Space Physics Research Lab., University of Michigan, Ann Arbor, MI, 48109-2143, USA (10) Max-Planck-Institut fur Sonnensystemforschung, D-37191, Katlenburg-Lindau, Germany (11) Space Science Lab., University of California in Berkeley, Berkeley, CA, 94720-7450, USA (12) Space Technology Ltd., National University of Ireland, Maynooth, Co. Kildare, Ireland (13) Instituto di Fisica dello Spazio Interplanetari, I-00133, Rome, Italy (14) Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723-6099, USA (15) University of Bern, Physikalisches Institut, CH-3012, Bern, Switzerland Article History: Registration Date: 25/10/2006 Received Date: 04/04/2006 Accepted Date: 25/10/2006 Online Date: 26/01/2007
identifier
0ISSN: 0038-6308
1ISBN: 038770941X
2ISBN: 9780387709413
3EISSN: 1572-9672
4DOI: 10.1007/s11214-006-9086-x
languageeng
publisherSpringer
subjectMagnetic fields ; Magnetization ; Mars (Planet)
ispartofSpace science reviews, 2007-03-20, Vol.126 (1-4), p.333-354
rightsCOPYRIGHT 2006 Springer
lds50peer_reviewed
citedbyFETCH-LOGICAL-1511t-98928b6540a74a169012533604df1963b79b1fec3b5b118ce16fa66e84714e1e0
citesFETCH-LOGICAL-1511t-98928b6540a74a169012533604df1963b79b1fec3b5b118ce16fa66e84714e1e0
links
openurl$$Topenurl_article
thumbnail$$Usyndetics_thumb_exl
search
creatorcontrib
0Lundin, R.
1Winningham, D.
2Barabash, S.
3Frahm, R.
4Brain, D.
5Nilsson, H.
6Holmström, M.
7Yamauchi, M.
8Sharber, J. R.
9Sauvaud, J.-A.
10Fedorov, A.
11Asamura, K.
12Hayakawa, H.
13Coates, A. J.
14Soobiah, Y.
15Curtis, C.
16Hsieh, K. C.
17Grande, M.
18Koskinen, H.
19Kallio, E.
20Kozyra, J.
21Woch, J.
22Fraenz, M.
23Luhmann, J.
24Mckenna-Lawler, S.
25Orsini, S.
26Brandt, P.
27Wurz, P.
title
0Auroral plasma acceleration above Martian magnetic anomalies
1Space science reviews
descriptionByline: R. Lundin (1), D. Winningham (2), S. Barabash (1), R. Frahm (2), D. Brain (11), H. Nilsson (1), M. Holmstrom (1), M. Yamauchi (1), J. R. Sharber (2), J.-A. Sauvaud (3), A. Fedorov (3), K. Asamura (4), H. Hayakawa (4), A. J. Coates (5), Y. Soobiah (5), C. Curtis (6), K. C. Hsieh (6), M. Grande (7), H. Koskinen (8), E. Kallio (8), J. Kozyra (9), J. Woch (10), M. Fraenz (10), J. Luhmann (11), S. Mckenna-Lawler (12), S. Orsini (13), P. Brandt (14), P. Wurz (15) Keywords: aurora; plasma acceleration; Mars magnetic anomalies Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth's discrete aurora not only visualizes the inclination of the Earth's magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas -- field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration -- the localized crustal magnetizations at Mars (Acuna et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA's Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth -- characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The "inverted V" energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars -- the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars. Author Affiliation: (1) Swedish Institute of Space Physics, Box 812, S-98 128, Kiruna, Sweden (2) Southwest Research Institute, San Antonio, TX, 7228-0510, USA (3) Centre d'Etude Spatiale des Rayonnements, BP-4346, F-31028, Toulouse, France (4) Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamichara, Japan (5) Mullard Space Science Laboratory, University College London, Surrey, RH5 6NT, UK (6) University of Arizona, Tucson, AZ, 85721, USA (7) Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK (8) Finnish Meteorological Institute, Box 503, FIN-00101, Helsinki, Finland (9) Space Physics Research Lab., University of Michigan, Ann Arbor, MI, 48109-2143, USA (10) Max-Planck-Institut fur Sonnensystemforschung, D-37191, Katlenburg-Lindau, Germany (11) Space Science Lab., University of California in Berkeley, Berkeley, CA, 94720-7450, USA (12) Space Technology Ltd., National University of Ireland, Maynooth, Co. Kildare, Ireland (13) Instituto di Fisica dello Spazio Interplanetari, I-00133, Rome, Italy (14) Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723-6099, USA (15) University of Bern, Physikalisches Institut, CH-3012, Bern, Switzerland Article History: Registration Date: 25/10/2006 Received Date: 04/04/2006 Accepted Date: 25/10/2006 Online Date: 26/01/2007
subject
0Magnetic fields
1Magnetization
2Mars (Planet)
issn
00038-6308
11572-9672
isbn
0038770941X
19780387709413
fulltextfalse
rsrctypearticle
creationdate2007
recordtypearticle
recordideNqFkU1P3EAMhkctlVhofwC3nHrLYieT-ZB6WaHSIoG4gMRt5AwOmirJbGeyFfx7Zrs9cSjywbL1Prb1WogzhDUC6POM2KCsAVRtwaj6-YNYYaeb2irdfBQn0BqtwUp8OBIrKFWtWjDH4iTnXwD7EXolvm12KSYaq-1IeaKKvOeREy0hzhX18Q9XN5SWQHM10dPMS_AVzXGiMXD-LD4NNGb-8i-fivvL73cXP-vr2x9XF5vrGjvEpbbGNqZXnQTSklBZwKZrWwXycUCr2l7bHgf2bd_1iMYzqoGUYiM1SkaGU_H1MHeb4u8d58VNIZc7R5o57rJriwcNdPZdYWM7hQZ0Ea4Pwica2YV5iEsiX-KRp-DjzEMo_Q0qMCBRywLgAfAp5px4cNsUJkovDsHtvXSHd7hyitu_wz0XRr9hfFj-OluWhfE_5CtmJ4us
startdate20070320
enddate20070320
creator
0Lundin, R.
1Winningham, D.
2Barabash, S.
3Frahm, R.
4Brain, D.
5Nilsson, H.
6Holmström, M.
7Yamauchi, M.
8Sharber, J. R.
9Sauvaud, J.-A.
10Fedorov, A.
11Asamura, K.
12Hayakawa, H.
13Coates, A. J.
14Soobiah, Y.
15Curtis, C.
16Hsieh, K. C.
17Grande, M.
18Koskinen, H.
19Kallio, E.
20Kozyra, J.
21Woch, J.
22Fraenz, M.
23Luhmann, J.
24Mckenna-Lawler, S.
25Orsini, S.
26Brandt, P.
27Wurz, P.
generalSpringer
scope
0AAYXX
1CITATION
2BSHEE
38FD
4H8D
5L7M
sort
creationdate20070320
titleAuroral plasma acceleration above Martian magnetic anomalies
authorLundin, R. ; Winningham, D. ; Barabash, S. ; Frahm, R. ; Brain, D. ; Nilsson, H. ; Holmström, M. ; Yamauchi, M. ; Sharber, J. R. ; Sauvaud, J.-A. ; Fedorov, A. ; Asamura, K. ; Hayakawa, H. ; Coates, A. J. ; Soobiah, Y. ; Curtis, C. ; Hsieh, K. C. ; Grande, M. ; Koskinen, H. ; Kallio, E. ; Kozyra, J. ; Woch, J. ; Fraenz, M. ; Luhmann, J. ; Mckenna-Lawler, S. ; Orsini, S. ; Brandt, P. ; Wurz, P.
facets
frbrtype5
frbrgroupidcdi_FETCH-LOGICAL-1511t-98928b6540a74a169012533604df1963b79b1fec3b5b118ce16fa66e84714e1e0
rsrctypearticles
prefilterarticles
languageeng
creationdate2007
topic
0Magnetic fields
1Magnetization
2Mars (Planet)
toplevelpeer_reviewed
creatorcontrib
0Lundin, R.
1Winningham, D.
2Barabash, S.
3Frahm, R.
4Brain, D.
5Nilsson, H.
6Holmström, M.
7Yamauchi, M.
8Sharber, J. R.
9Sauvaud, J.-A.
10Fedorov, A.
11Asamura, K.
12Hayakawa, H.
13Coates, A. J.
14Soobiah, Y.
15Curtis, C.
16Hsieh, K. C.
17Grande, M.
18Koskinen, H.
19Kallio, E.
20Kozyra, J.
21Woch, J.
22Fraenz, M.
23Luhmann, J.
24Mckenna-Lawler, S.
25Orsini, S.
26Brandt, P.
27Wurz, P.
collection
0CrossRef
1Academic OneFile (A&I only)
2Technology Research Database
3Aerospace Database
4Advanced Technologies Database with Aerospace
jtitleSpace science reviews
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
au
0Lundin, R.
1Winningham, D.
2Barabash, S.
3Frahm, R.
4Brain, D.
5Nilsson, H.
6Holmström, M.
7Yamauchi, M.
8Sharber, J. R.
9Sauvaud, J.-A.
10Fedorov, A.
11Asamura, K.
12Hayakawa, H.
13Coates, A. J.
14Soobiah, Y.
15Curtis, C.
16Hsieh, K. C.
17Grande, M.
18Koskinen, H.
19Kallio, E.
20Kozyra, J.
21Woch, J.
22Fraenz, M.
23Luhmann, J.
24Mckenna-Lawler, S.
25Orsini, S.
26Brandt, P.
27Wurz, P.
formatjournal
genrearticle
ristypeJOUR
atitleAuroral plasma acceleration above Martian magnetic anomalies
jtitleSpace science reviews
date2007-03-20
risdate2007
volume126
issue1-4
spage333
epage354
pages333-354
issn0038-6308
eissn1572-9672
isbn
0038770941X
19780387709413
abstractByline: R. Lundin (1), D. Winningham (2), S. Barabash (1), R. Frahm (2), D. Brain (11), H. Nilsson (1), M. Holmstrom (1), M. Yamauchi (1), J. R. Sharber (2), J.-A. Sauvaud (3), A. Fedorov (3), K. Asamura (4), H. Hayakawa (4), A. J. Coates (5), Y. Soobiah (5), C. Curtis (6), K. C. Hsieh (6), M. Grande (7), H. Koskinen (8), E. Kallio (8), J. Kozyra (9), J. Woch (10), M. Fraenz (10), J. Luhmann (11), S. Mckenna-Lawler (12), S. Orsini (13), P. Brandt (14), P. Wurz (15) Keywords: aurora; plasma acceleration; Mars magnetic anomalies Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth's discrete aurora not only visualizes the inclination of the Earth's magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas -- field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration -- the localized crustal magnetizations at Mars (Acuna et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA's Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth -- characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The "inverted V" energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars -- the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars. Author Affiliation: (1) Swedish Institute of Space Physics, Box 812, S-98 128, Kiruna, Sweden (2) Southwest Research Institute, San Antonio, TX, 7228-0510, USA (3) Centre d'Etude Spatiale des Rayonnements, BP-4346, F-31028, Toulouse, France (4) Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamichara, Japan (5) Mullard Space Science Laboratory, University College London, Surrey, RH5 6NT, UK (6) University of Arizona, Tucson, AZ, 85721, USA (7) Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK (8) Finnish Meteorological Institute, Box 503, FIN-00101, Helsinki, Finland (9) Space Physics Research Lab., University of Michigan, Ann Arbor, MI, 48109-2143, USA (10) Max-Planck-Institut fur Sonnensystemforschung, D-37191, Katlenburg-Lindau, Germany (11) Space Science Lab., University of California in Berkeley, Berkeley, CA, 94720-7450, USA (12) Space Technology Ltd., National University of Ireland, Maynooth, Co. Kildare, Ireland (13) Instituto di Fisica dello Spazio Interplanetari, I-00133, Rome, Italy (14) Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723-6099, USA (15) University of Bern, Physikalisches Institut, CH-3012, Bern, Switzerland Article History: Registration Date: 25/10/2006 Received Date: 04/04/2006 Accepted Date: 25/10/2006 Online Date: 26/01/2007
pubSpringer
doi10.1007/s11214-006-9086-x