schliessen

Filtern

 

Bibliotheken

Robust change point detection method via adaptive LAD-LASSO

Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine t... Full description

Journal Title: Statistical papers (Berlin Germany), 2017-06-30, Vol.61 (1), p.109-121
Main Author: Li, Qiang
Other Authors: Wang, Liming
Format: Electronic Article Electronic Article
Language: English
Subjects:
Publisher: Berlin/Heidelberg: Springer Berlin Heidelberg
ID: ISSN: 0932-5026
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: cdi_springer_journals_10_1007_s00362_017_0927_3
title: Robust change point detection method via adaptive LAD-LASSO
format: Article
creator:
  • Li, Qiang
  • Wang, Liming
subjects:
  • Algorithms
  • Analysis
  • Basic converters
  • Change detection
  • Computer simulation
  • Econometrics
  • Economic Theory/Quantitative Economics/Mathematical Methods
  • Economics
  • Finance
  • Insurance
  • Management
  • Mathematics and Statistics
  • Methods
  • Operations Research/Decision Theory
  • Outliers (statistics)
  • Probability Theory and Stochastic Processes
  • Regular Article
  • Robustness
  • Signal processing
  • Statistics
  • Statistics for Business
ispartof: Statistical papers (Berlin, Germany), 2017-06-30, Vol.61 (1), p.109-121
description: Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize.
language: eng
source:
identifier: ISSN: 0932-5026
fulltext: no_fulltext
issn:
  • 0932-5026
  • 1613-9798
url: Link


@attributes
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
RANK2.4671853
LOCALfalse
PrimoNMBib
record
control
sourceidgale_proqu
recordidTN_cdi_springer_journals_10_1007_s00362_017_0927_3
sourceformatXML
sourcesystemPC
galeidA637847742
sourcerecordidA637847742
originalsourceidFETCH-LOGICAL-c331t-79529de10b7c88e48907e7d025542ad3fa04c05c99253689f398b0fc119812d40
addsrcrecordideNp1kE1LAzEQhoMoWKs_wNuC59RJsrtJ8LTUT1goWD2HNJttU9rNukkL_ntTVvAkcxgY3mdmeBC6JTAjAPw-ALCSYiAcg6QcszM0ISVhWHIpztEEJKO4AFpeoqsQtgBECAET9PDuV4cQM7PR3dpmvXddzBobrYnOd9nexo1vsqPTmW50H93RZnX1iOtquVxco4tW74K9-e1T9Pn89DF_xfXi5W1e1dgwRiLmsqCysQRW3AhhcyGBW94ALYqc6oa1GnIDhZGSFqwUsmVSrKA1hEhBaJPDFN2Ne_vBfx1siGrrD0OXTirKck6AMlqm1GxMrfXOKte1Pg7apGrs3hnf2daleVUyLnLOc5oAMgJm8CEMtlX94PZ6-FYE1EmqGqWqJFWdpCqWGDoyIWWTsOHvlf-hH0FjdjQ
sourcetypeAggregation Database
isCDItrue
recordtypearticle
pqid2347102326
display
typearticle
titleRobust change point detection method via adaptive LAD-LASSO
creatorLi, Qiang ; Wang, Liming
creatorcontribLi, Qiang ; Wang, Liming
descriptionChange point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize.
identifier
0ISSN: 0932-5026
1EISSN: 1613-9798
2DOI: 10.1007/s00362-017-0927-3
languageeng
publisherBerlin/Heidelberg: Springer Berlin Heidelberg
subjectAlgorithms ; Analysis ; Basic converters ; Change detection ; Computer simulation ; Econometrics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Outliers (statistics) ; Probability Theory and Stochastic Processes ; Regular Article ; Robustness ; Signal processing ; Statistics ; Statistics for Business
ispartofStatistical papers (Berlin, Germany), 2017-06-30, Vol.61 (1), p.109-121
rights
0Springer-Verlag GmbH Germany 2017
1COPYRIGHT 2020 Springer
2Statistical Papers is a copyright of Springer, (2017). All Rights Reserved.
lds50peer_reviewed
citesFETCH-LOGICAL-c331t-79529de10b7c88e48907e7d025542ad3fa04c05c99253689f398b0fc119812d40
links
openurl$$Topenurl_article
thumbnail$$Usyndetics_thumb_exl
search
creatorcontrib
0Li, Qiang
1Wang, Liming
title
0Robust change point detection method via adaptive LAD-LASSO
1Statistical papers (Berlin, Germany)
addtitleStat Papers
descriptionChange point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize.
subject
0Algorithms
1Analysis
2Basic converters
3Change detection
4Computer simulation
5Econometrics
6Economic Theory/Quantitative Economics/Mathematical Methods
7Economics
8Finance
9Insurance
10Management
11Mathematics and Statistics
12Methods
13Operations Research/Decision Theory
14Outliers (statistics)
15Probability Theory and Stochastic Processes
16Regular Article
17Robustness
18Signal processing
19Statistics
20Statistics for Business
issn
00932-5026
11613-9798
fulltextfalse
rsrctypearticle
creationdate2017
recordtypearticle
recordideNp1kE1LAzEQhoMoWKs_wNuC59RJsrtJ8LTUT1goWD2HNJttU9rNukkL_ntTVvAkcxgY3mdmeBC6JTAjAPw-ALCSYiAcg6QcszM0ISVhWHIpztEEJKO4AFpeoqsQtgBECAET9PDuV4cQM7PR3dpmvXddzBobrYnOd9nexo1vsqPTmW50H93RZnX1iOtquVxco4tW74K9-e1T9Pn89DF_xfXi5W1e1dgwRiLmsqCysQRW3AhhcyGBW94ALYqc6oa1GnIDhZGSFqwUsmVSrKA1hEhBaJPDFN2Ne_vBfx1siGrrD0OXTirKck6AMlqm1GxMrfXOKte1Pg7apGrs3hnf2daleVUyLnLOc5oAMgJm8CEMtlX94PZ6-FYE1EmqGqWqJFWdpCqWGDoyIWWTsOHvlf-hH0FjdjQ
startdate20170630
enddate20170630
creator
0Li, Qiang
1Wang, Liming
general
0Springer Berlin Heidelberg
1Springer
2Springer Nature B.V
scope
0AAYXX
1CITATION
2BSHEE
33V.
47SC
57WY
67WZ
77XB
887Z
988I
108AO
118C1
128FD
138FE
148FG
158FK
168FL
17ABJCF
18ABUWG
19AZQEC
20BENPR
21BEZIV
22BGLVJ
23DWQXO
24FRNLG
25FYUFA
26F~G
27GHDGH
28GNUQQ
29HCIFZ
30JQ2
31K60
32K6~
33L.-
34L6V
35L7M
36L~C
37L~D
38M0C
39M2P
40M7S
41PQBIZ
42PQBZA
43PQEST
44PQQKQ
45PQUKI
46PRINS
47PTHSS
48PYYUZ
49Q9U
sort
creationdate20170630
titleRobust change point detection method via adaptive LAD-LASSO
authorLi, Qiang ; Wang, Liming
facets
frbrtype5
frbrgroupidcdi_FETCH-LOGICAL-c331t-79529de10b7c88e48907e7d025542ad3fa04c05c99253689f398b0fc119812d40
rsrctypearticles
prefilterarticles
languageeng
creationdate2017
topic
0Algorithms
1Analysis
2Basic converters
3Change detection
4Computer simulation
5Econometrics
6Economic Theory/Quantitative Economics/Mathematical Methods
7Economics
8Finance
9Insurance
10Management
11Mathematics and Statistics
12Methods
13Operations Research/Decision Theory
14Outliers (statistics)
15Probability Theory and Stochastic Processes
16Regular Article
17Robustness
18Signal processing
19Statistics
20Statistics for Business
toplevelpeer_reviewed
creatorcontrib
0Li, Qiang
1Wang, Liming
collection
0CrossRef
1Academic OneFile (A&I only)
2ProQuest Central (Corporate)
3Computer and Information Systems Abstracts
4ABI/INFORM Collection
5ABI/INFORM Global (PDF only)
6ProQuest Central (purchase pre-March 2016)
7ABI/INFORM Global (Alumni Edition)
8Science Database (Alumni Edition)
9ProQuest Pharma Collection
10Public Health Database
11Technology Research Database
12ProQuest SciTech Collection
13ProQuest Technology Collection
14ProQuest Central (Alumni) (purchase pre-March 2016)
15ABI/INFORM Collection (Alumni Edition)
16Materials Science & Engineering Collection
17ProQuest Central (Alumni Edition)
18ProQuest Central Essentials
19ProQuest Central
20Business Premium Collection
21Technology Collection
22ProQuest Central Korea
23Business Premium Collection (Alumni)
24Health Research Premium Collection
25ABI/INFORM Global (Corporate)
26Health Research Premium Collection (Alumni)
27ProQuest Central Student
28SciTech Premium Collection
29ProQuest Computer Science Collection
30ProQuest Business Collection (Alumni Edition)
31ProQuest Business Collection
32ABI/INFORM Professional Advanced
33ProQuest Engineering Collection
34Advanced Technologies Database with Aerospace
35Computer and Information Systems Abstracts – Academic
36Computer and Information Systems Abstracts Professional
37ABI/INFORM Global
38Science Database
39Engineering Database
40ProQuest One Business
41ProQuest One Business (Alumni)
42ProQuest One Academic Eastern Edition
43ProQuest One Academic
44ProQuest One Academic UKI Edition
45ProQuest Central China
46Engineering Collection
47ABI/INFORM Collection China
48ProQuest Central Basic
jtitleStatistical papers (Berlin, Germany)
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
au
0Li, Qiang
1Wang, Liming
formatjournal
genrearticle
ristypeJOUR
atitleRobust change point detection method via adaptive LAD-LASSO
jtitleStatistical papers (Berlin, Germany)
stitleStat Papers
date2017-06-30
risdate2017
volume61
issue1
spage109
epage121
pages109-121
issn0932-5026
eissn1613-9798
abstractChange point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize.
copBerlin/Heidelberg
pubSpringer Berlin Heidelberg
doi10.1007/s00362-017-0927-3