schliessen

Filtern

 

Bibliotheken

Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth

Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterio... Full description

Journal Title: Proceedings of the National Academy of Sciences 02/07/2012, Vol.109(6), pp.2015-2020
Main Author: Seo, S.
Other Authors: Singh, H. P. , Lacal, P. M. , Sasman, A. , Fatima, A. , Liu, T. , Schultz, K. M. , Losordo, D. W. , Lehmann, O. J. , Kume, T.
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0027-8424 ; E-ISSN: 1091-6490 ; DOI: http://dx.doi.org/10.1073/pnas.1109540109
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: crossref10.1073/pnas.1109540109
title: Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth
format: Article
creator:
  • Seo, S.
  • Singh, H. P.
  • Lacal, P. M.
  • Sasman, A.
  • Fatima, A.
  • Liu, T.
  • Schultz, K. M.
  • Losordo, D. W.
  • Lehmann, O. J.
  • Kume, T.
subjects:
  • Endothelial Growth Factors -- Research
  • Vascular Endothelial Growth Factor -- Research
  • Neovascularization -- Growth
  • Neovascularization -- Research
ispartof: Proceedings of the National Academy of Sciences, 02/07/2012, Vol.109(6), pp.2015-2020
description: Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld-Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global ([Foxc1.sup.-/-]) or neural crest (NC)-specific (NC-[Foxc1.sup.-/-]) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants ([Foxc1.sup.+/-] and NC-[Foxc1.sup.+/-]) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both [Foxc1.sup.+/-] and NC-[Foxc1.sup.+/-] mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling. avascularity | soluble form of VEGF receptor 1 | VEGF bioavailablility doi/ 10.1073/pnas.1109540109
language: eng
source:
identifier: ISSN: 0027-8424 ; E-ISSN: 1091-6490 ; DOI: http://dx.doi.org/10.1073/pnas.1109540109
fulltext: fulltext
issn:
  • 00278424
  • 0027-8424
  • 10916490
  • 1091-6490
url: Link


@attributes
ID643815422
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid10.1073/pnas.1109540109
sourceidcrossref
recordidTN_crossref10.1073/pnas.1109540109
sourceformatXML
sourcesystemPC
pqid921004553
galeid281461133
display
typearticle
titleForkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth
creatorSeo, S. ; Singh, H. P. ; Lacal, P. M. ; Sasman, A. ; Fatima, A. ; Liu, T. ; Schultz, K. M. ; Losordo, D. W. ; Lehmann, O. J. ; Kume, T.
ispartofProceedings of the National Academy of Sciences, 02/07/2012, Vol.109(6), pp.2015-2020
identifier
languageeng
source
lds4120120207
descriptionNormal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld-Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global ([Foxc1.sup.-/-]) or neural crest (NC)-specific (NC-[Foxc1.sup.-/-]) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants ([Foxc1.sup.+/-] and NC-[Foxc1.sup.+/-]) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both [Foxc1.sup.+/-] and NC-[Foxc1.sup.+/-] mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling. avascularity | soluble form of VEGF receptor 1 | VEGF bioavailablility doi/ 10.1073/pnas.1109540109
subjectEndothelial Growth Factors -- Research ; Vascular Endothelial Growth Factor -- Research ; Neovascularization -- Growth ; Neovascularization -- Research;
version8
lds50peer_reviewed
links
openurl$$Topenurl_article
thumbnail
0$$TPCamazon_thumb
1$$TPCgoogle_thumb
openurlfulltext$$Topenurlfull_article
addlink$$Uhttp://exlibris-pub.s3.amazonaws.com/aboutCrossref.html$$EView_CrossRef_copyright_notice
search
creatorcontrib
0Seo, S.
1Singh, H. P.
2Lacal, P. M.
3Sasman, A.
4Fatima, A.
5Liu, T.
6Schultz, K. M.
7Losordo, D. W.
8Lehmann, O. J.
9Kume, T.
titleForkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth
general
0English
110.1073/pnas.1109540109
2CrossRef
sourceidcrossref
recordidcrossref10.1073/pnas.1109540109
issn
000278424
10027-8424
210916490
31091-6490
rsrctypearticle
addtitleProceedings of the National Academy of Sciences
searchscope
0crossref_rest
1CrossRef
2Crossref
3crossref
scope
0crossref_rest
1CrossRef
2Crossref
3crossref
lsr402012201202020707
lsr4120120207
lsr4220120207
lsr4320120207
lsr442011
lsr452011201212021407
tmp012
tmp022
creationdate2012
startdate20120207
enddate20120207
citationpf 2015 pt 2020 vol 109 issue 6
lsr30VSR-Enriched:[galeid, description, subject, pqid]
sort
titleForkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth
authorSeo, S. ; Singh, H. P. ; Lacal, P. M. ; Sasman, A. ; Fatima, A. ; Liu, T. ; Schultz, K. M. ; Losordo, D. W. ; Lehmann, O. J. ; Kume, T.
creationdate20120207
lso0120120207
facets
frbrgroupid8022778087561265042
frbrtype5
languageeng
creationdate2012
prefilterarticles
rsrctypearticles
creatorcontrib
0Seo, S.
1Singh, H. P.
2Lacal, P. M.
3Sasman, A.
4Fatima, A.
5Liu, T.
6Schultz, K. M.
7Losordo, D. W.
8Lehmann, O. J.
9Kume, T.
jtitleProceedings of the National Academy of Sciences
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Seo
1Singh
2Lacal
3Sasman
4Fatima
5Liu
6Schultz
7Losordo
8Lehmann
9Kume
aufirst
0S.
1H. P.
2P. M.
3A.
4T.
5K. M.
6D. W.
7O. J.
au
0Seo, S.
1Singh, H. P.
2Lacal, P. M.
3Sasman, A.
4Fatima, A.
5Liu, T.
6Schultz, K. M.
7Losordo, D. W.
8Lehmann, O. J.
9Kume, T.
atitleForkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth
jtitleProceedings of the National Academy of Sciences
stitleProceedings of the National Academy of Sciences
risdate20120207
adddate
020120207
12012201202020707
22011
32011201212021407
volume109
issue6
spage2015
epage2020
pages2015-2020
issn0027-8424
eissn1091-6490
formatjournal
genrearticle
ristypeJOUR
doi10.1073/pnas.1109540109
lad012
lad25drop record use citations
citing
0$$t=2$$K1=2011$$K2=14764687$$K3=10.1038/nature10144$$K4=473$$K5=7347$$K6=298$$K7=nature physical science london$$K15=carmeliet$$K16=carmeliet$$K18=carmeliet
1$$t=2$$K1=2008$$K2=15396851$$K3=10.1089/lrb.2008.6348$$K4=6$$K5=3$$K6=191$$K7=lymphatic research biology$$K15=regenfuss$$K16=regenfuss$$K18=regenfuss
2$$t=2$$K1=2010$$K2=11775467$$K4=4$$K6=275$$K15=sassa$$K16=sassa$$K18=sassa
3$$t=2$$K1=2009$$K2=15665240$$K3=10.2174/156652409789712783$$K4=9$$K5=8$$K6=973$$K7=current molecular medicine$$K15=tolentino$$K16=tolentino$$K18=tolentino
4$$t=2$$K1=2006$$K2=00659533$$K4=104$$K6=264$$K7=transactions of the american ophthalmological society$$K15=azar$$K16=azar$$K18=azar
5$$t=2$$K1=2001$$K2=10408738$$K3=10.1097/00055735-200108000-00002$$K4=12$$K5=4$$K6=242$$K7=current opinion in ophthalmology$$K15=chang$$K16=chang$$K18=chang
6$$t=2$$K1=2010$$K2=03619230$$K3=10.1016/j.brainresbull.2009.05.019$$K4=81$$K5=2$$K6=198$$K7=brain research bulletin$$K15=qazi$$K16=qazi$$K18=qazi
7$$t=2$$K1=2011$$K2=0959437X$$K3=10.1016/j.gde.2010.10.008$$K4=21$$K5=1$$K6=73$$K7=current opinion in genetics amp development$$K15=debock$$K16=bockde$$K18=bock
8$$t=2$$K1=2006$$K2=14764687$$K3=10.1038/nature05249$$K4=443$$K5=7114$$K6=993$$K7=nature physical science london$$K15=ambati$$K16=ambati$$K18=ambati
9$$t=2$$K1=2009$$K2=0302766X$$K3=10.1007/s00441-008-0675-8$$K4=335$$K5=1$$K6=261$$K7=cell tissue research$$K15=crawford$$K16=crawford$$K18=crawford
10$$t=2$$K1=2011$$K2=01689525$$K3=10.1016/j.tig.2011.03.003$$K4=27$$K5=6$$K6=224$$K7=trends in genetics tig$$K15=benayoun$$K16=benayoun$$K18=benayoun
11$$t=2$$K1=2002$$K2=00121606$$K3=10.1006/dbio.2002.0780$$K4=250$$K5=1$$K6=1$$K7=developmental biology$$K15=carlsson$$K16=carlsson$$K18=carlsson
12$$t=2$$K1=2009$$K2=14710056$$K3=10.1038/nrg2523$$K4=10$$K5=4$$K6=233$$K7=nature reviews genetics$$K15=hannenhalli$$K16=hannenhalli$$K18=hannenhalli
13$$t=2$$K1=2003$$K2=01689525$$K3=10.1016/S0168-9525(03)00111-2$$K4=19$$K5=6$$K6=339$$K7=trends in genetics tig$$K15=lehmann$$K16=lehmann$$K18=lehmann
14$$t=2$$K1=2009$$K2=00652598$$K3=10.1007/978-1-4419-1599-3_5$$K4=665$$K6=63$$K7=advances in experimental medicine biology$$K15=kume$$K16=kume$$K18=kume
15$$t=2$$K1=2008$$K2=00097330$$K3=10.1161/CIRCRESAHA.107.164186$$K4=102$$K5=1$$K6=16$$K7=circulation research$$K15=papanicolaou$$K16=papanicolaou$$K18=papanicolaou
16$$t=2$$K1=2003$$K2=11206721$$K4=13$$K5=6$$K6=580$$K7=european journal of ophthalmology$$K15=ko  akmidillioglu$$K16=ko  akmidillioglu$$K18=ko  akmidillioglu
17$$t=2$$K1=1985$$K2=00396257$$K3=10.1016/0039-6257(85)90205-X$$K4=29$$K5=6$$K6=387$$K7=survey of ophthalmology$$K15=shields$$K16=shields$$K18=shields
18$$t=2$$K1=2009$$K2=10614036$$K3=10.1038/ng.422$$K4=41$$K5=9$$K6=1037$$K7=nature genetics$$K15=aldinger$$K16=aldinger$$K18=aldinger
19$$t=2$$K1=2005$$K2=09501991$$K3=10.1242/dev.02031$$K4=132$$K5=21$$K6=4789$$K7=development
20$$t=2$$K1=2009$$K2=00928674$$K3=10.1016/j.cell.2009.10.004$$K4=139$$K5=3$$K6=597$$K7=cell$$K15=siegenthaler$$K16=siegenthaler$$K18=siegenthaler
21$$t=2$$K1=2000$$K2=00029394$$K3=10.1016/S0002-9394(00)00525-0$$K4=130$$K5=1$$K6=107$$K7=american journal of ophthalmology$$K15=alward$$K16=alward$$K18=alward
22$$t=2$$K1=2000$$K2=00029297$$K4=67$$K5=5$$K6=1129$$K7=american journal of human genetics$$K15=lehmann$$K16=lehmann$$K18=lehmann
23$$t=2$$K1=1998$$K2=00029297$$K3=10.1086/302109$$K4=63$$K5=5$$K6=1316$$K7=american journal of human genetics$$K15=mears$$K16=mears$$K18=mears
24$$t=2$$K1=1998$$K2=10614036$$K3=10.1038/493$$K4=19$$K5=2$$K6=140$$K7=nature genetics$$K15=nishimura$$K16=nishimura$$K18=nishimura
25$$t=2$$K1=2009$$K2=10184813$$K3=10.1038/ejhg.2009.93$$K4=17$$K5=12$$K6=1527$$K7=european journal of human genetics ejhg$$K15=tumer$$K16=tumer$$K18=tumer
26$$t=2$$K1=2000$$K2=09646906$$K3=10.1093/hmg/9.7.1021$$K4=9$$K5=7$$K6=1021$$K7=human molecular genetics$$K15=smith$$K16=smith$$K18=smith
27$$t=2$$K1=1999$$K2=00121606$$K3=10.1006/dbio.1999.9314$$K4=211$$K5=2$$K6=306$$K7=developmental biology$$K15=kidson$$K16=kidson$$K18=kidson
28$$t=2$$K1=1998$$K2=00928674$$K3=10.1016/S0092-8674(00)81204-0$$K4=93$$K5=6$$K6=985$$K7=cell$$K15=kume$$K16=kume$$K18=kume
29$$t=2$$K1=2005$$K2=00209988$$K3=10.1167/iovs.05-0691$$K4=46$$K5=11$$K6=4200$$K7=investigative ophthalmology amp visual science$$K15=gage$$K16=gage$$K18=gage
30$$t=2$$K1=2008$$K2=09646906$$K3=10.1093/hmg/ddn238$$K4=17$$K5=22$$K6=3446$$K7=human molecular genetics
31$$t=2$$K1=2009$$K2=10588388$$K3=10.1002/dvdy.22033$$K4=238$$K5=9$$K6=2149$$K7=developmental dynamics an official publication of the american association of anatomists$$K15=gage$$K16=gage$$K18=gage
32$$t=2$$K1=2008$$K2=19326203$$K3=10.1371/journal.pone.0002401$$K4=3$$K5=6$$K6=e2401$$K15=hayashi$$K16=hayashi$$K18=hayashi
33$$t=2$$K1=2008$$K2=0006291X$$K3=10.1016/j.bbrc.2007.12.183$$K4=367$$K5=3$$K6=584$$K7=biochemical biophysical research communications$$K15=hayashi$$K16=hayashi$$K18=hayashi
34$$t=2$$K1=2001$$K2=08909369$$K3=10.1101/gad.907301$$K4=15$$K5=18$$K6=2470$$K7=genes amp development$$K15=kume$$K16=kume$$K18=kume
35$$t=2$$K1=2006$$K2=00121606$$K3=10.1016/j.ydbio.2006.03.035$$K4=294$$K5=2$$K6=458$$K7=developmental biology$$K15=seo$$K16=seo$$K18=seo
36$$t=2$$K1=2010$$K2=13509462$$K3=10.1016/j.preteyeres.2010.01.002$$K4=29$$K5=3$$K6=208$$K7=progress in retinal eye research$$K15=ellenberg$$K16=ellenberg$$K18=ellenberg
37$$t=2$$K1=2010$$K2=08926638$$K3=10.1096/fj.09-134056$$K4=24$$K5=2$$K6=504$$K7=faseb journal
38$$t=2$$K1=2011$$K2=00064971$$K3=10.1182/blood-2010-02-267427$$K4=117$$K5=3$$K6=1081$$K7=blood
39$$t=2$$K1=2009$$K2=15345807$$K3=10.1016/j.devcel.2009.07.011$$K4=17$$K5=3$$K6=377$$K7=developmental cell$$K15=chappell$$K16=chappell$$K18=chappell
40$$t=2$$K1=2009$$K2=02707306$$K3=10.1128/MCB.00077-09$$K4=29$$K5=18$$K6=4906$$K7=molecular cellular biology
41$$t=2$$K1=2007$$K2=02707306$$K3=10.1128/MCB.01748-06$$K4=27$$K5=7$$K6=2676$$K7=molecular cellular biology
42$$t=2$$K1=2010$$K2=01676806$$K3=10.1007/s10549-009-0572-1$$K4=122$$K5=2$$K6=337$$K7=breast cancer research treatment$$K15=ahmad$$K16=ahmad$$K18=ahmad
43$$t=2$$K1=2003$$K2=00209988$$K3=10.1167/iovs.02-0685$$K4=44$$K5=2$$K6=590$$K7=investigative ophthalmology amp visual science$$K15=ambati$$K16=ambati$$K18=ambati
44$$t=2$$K1=2003$$K2=02773740$$K3=10.1097/00003226-200307000-00013$$K4=22$$K5=5$$K6=465$$K7=cornea$$K15=ambati$$K16=ambati$$K18=ambati
45$$t=2$$K1=2000$$K2=14764679$$K3=10.1038/35036374$$K4=2$$K5=10$$K6=737$$K7=nature cell biology$$K15=bergers$$K16=bergers$$K18=bergers
46$$t=2$$K1=2008$$K2=09598049$$K3=10.1016/j.ejca.2008.06.031$$K4=44$$K5=13$$K6=1904$$K7=european journal of cancer oxford england 1990$$K15=hawinkels$$K16=hawinkels$$K18=hawinkels
47$$t=2$$K1=2005$$K2=00219525$$K3=10.1083/jcb.200409115$$K4=169$$K5=4$$K6=681$$K7=journal of cell biology
48$$t=2$$K1=2008$$K2=00215155$$K3=10.1007/s10384-007-0506-6$$K4=52$$K5=2$$K6=91$$K7=japanese journal of ophthalmology$$K15=kami$$K16=kami$$K18=kami
49$$t=2$$K1=2005$$K2=08876924$$K3=10.1038/sj.leu.2403754$$K4=19$$K5=6$$K6=901$$K7=leukemia official journal of the leukemia society of america leukemia research fund u k$$K15=sanda$$K16=sanda$$K18=sanda
50$$t=2$$K1=2010$$K2=00086363$$K3=10.1093/cvr/cvq049$$K4=86$$K5=2$$K6=226$$K7=cardiovascular research
51$$t=2$$K1=2010$$K2=10591524$$K3=10.1091/mbc.E09-07-0590$$K4=21$$K5=5$$K6=687$$K7=molecular biology of the cell$$K15=ferrara$$K16=ferrara$$K18=ferrara
52$$t=2$$K1=2008$$K2=00278424$$K3=10.1073/pnas.0805206105$$K4=105$$K5=37$$K6=14076$$K7=pnas
53$$t=2$$K1=2010$$K2=14655411$$K3=10.1186/bcr2466$$K4=12$$K5=1$$K6=R3$$K7=breast cancer research bcr$$K15=muggerud$$K16=muggerud$$K18=muggerud
54$$t=2$$K1=2000$$K2=08909369$$K4=14$$K5=2$$K6=142$$K7=genes amp development$$K15=kaestner$$K16=kaestner$$K18=kaestner
date2012-02-07