schliessen

Filtern

 

Bibliotheken

Structural basis for DNA recognition and loading into a viral packaging motor

Genome packaging into preformed viral procapsids is driven by powerful molecular motors. The small terminase protein is essential for the initial recognition of viral DNA and regulates the motor's ATPase and nuclease activities during DNA translocation. The crystal structure of a full-length small t... Full description

Journal Title: Proceedings of the National Academy of Sciences 01/17/2012, Vol.109(3), pp.811-816
Main Author: Buttner, C. R.
Other Authors: Chechik, M. , Ortiz-Lombardia, M. , Smits, C. , Ebong, I.-O. , Chechik, V. , Jeschke, G. , Dykeman, E. , Benini, S. , Robinson, C. V. , Alonso, J. C. , Antson, A. A.
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0027-8424 ; E-ISSN: 1091-6490 ; DOI: http://dx.doi.org/10.1073/pnas.1110270109
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: crossref10.1073/pnas.1110270109
title: Structural basis for DNA recognition and loading into a viral packaging motor
format: Article
creator:
  • Buttner, C. R.
  • Chechik, M.
  • Ortiz-Lombardia, M.
  • Smits, C.
  • Ebong, I.-O.
  • Chechik, V.
  • Jeschke, G.
  • Dykeman, E.
  • Benini, S.
  • Robinson, C. V.
  • Alonso, J. C.
  • Antson, A. A.
subjects:
  • Sciences (General)
ispartof: Proceedings of the National Academy of Sciences, 01/17/2012, Vol.109(3), pp.811-816
description: Genome packaging into preformed viral procapsids is driven by powerful molecular motors. The small terminase protein is essential for the initial recognition of viral DNA and regulates the motor's ATPase and nuclease activities during DNA translocation. The crystal structure of a full-length small terminase protein from the Siphoviridae bacteriophage SF6, comprising the N-terminal DNA binding, the oligomerization core, and the C-terminal β-barrel domains, reveals a nine-subunit circular assembly in which the DNA-binding domains are arranged around the oligomerization core in a highly flexible manner. Mass spectrometry analysis and four further crystal structures show that, although the full-length protein exclusively forms nine-subunit assemblies, protein constructs missing the C-terminal β-barrel form both nine-subunit and ten-subunit assemblies, indicating the importance of the C terminus for defining the oligomeric state. The mechanism by which a ring-shaped small terminase oligomer binds viral DNA has not previously been elucidated. Here, we probed binding in vitro by using EPR and surface plasmon resonance experiments, which indicated that interaction with DNA is mediated exclusively by the DNA-binding domains and suggested a nucleosome-like model in which DNA binds around the outside of the protein oligomer.
language: eng
source:
identifier: ISSN: 0027-8424 ; E-ISSN: 1091-6490 ; DOI: http://dx.doi.org/10.1073/pnas.1110270109
fulltext: fulltext
issn:
  • 00278424
  • 0027-8424
  • 10916490
  • 1091-6490
url: Link


@attributes
ID204905887
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid10.1073/pnas.1110270109
sourceidcrossref
recordidTN_crossref10.1073/pnas.1110270109
sourceformatXML
sourcesystemPC
pqid920231476
display
typearticle
titleStructural basis for DNA recognition and loading into a viral packaging motor
creatorButtner, C. R. ; Chechik, M. ; Ortiz-Lombardia, M. ; Smits, C. ; Ebong, I.-O. ; Chechik, V. ; Jeschke, G. ; Dykeman, E. ; Benini, S. ; Robinson, C. V. ; Alonso, J. C. ; Antson, A. A.
ispartofProceedings of the National Academy of Sciences, 01/17/2012, Vol.109(3), pp.811-816
identifier
languageeng
source
lds4120120117
description

Genome packaging into preformed viral procapsids is driven by powerful molecular motors. The small terminase protein is essential for the initial recognition of viral DNA and regulates the motor's ATPase and nuclease activities during DNA translocation. The crystal structure of a full-length small terminase protein from the Siphoviridae bacteriophage SF6, comprising the N-terminal DNA binding, the oligomerization core, and the C-terminal β-barrel domains, reveals a nine-subunit circular assembly in which the DNA-binding domains are arranged around the oligomerization core in a highly flexible manner. Mass spectrometry analysis and four further crystal structures show that, although the full-length protein exclusively forms nine-subunit assemblies, protein constructs missing the C-terminal β-barrel form both nine-subunit and ten-subunit assemblies, indicating the importance of the C terminus for defining the oligomeric state. The mechanism by which a ring-shaped small terminase oligomer binds viral DNA has not previously been elucidated. Here, we probed binding in vitro by using EPR and surface plasmon resonance experiments, which indicated that interaction with DNA is mediated exclusively by the DNA-binding domains and suggested a nucleosome-like model in which DNA binds around the outside of the protein oligomer.

subjectSciences (General);
version7
lds50peer_reviewed
links
openurl$$Topenurl_article
thumbnail
0$$TPCamazon_thumb
1$$TPCgoogle_thumb
openurlfulltext$$Topenurlfull_article
addlink$$Uhttp://exlibris-pub.s3.amazonaws.com/aboutCrossref.html$$EView_CrossRef_copyright_notice
search
creatorcontrib
0Buttner, C. R.
1Chechik, M.
2Ortiz-Lombardia, M.
3Smits, C.
4Ebong, I.-O.
5Chechik, V.
6Jeschke, G.
7Dykeman, E.
8Benini, S.
9Robinson, C. V.
10Alonso, J. C.
11Antson, A. A.
titleStructural basis for DNA recognition and loading into a viral packaging motor
general
0English
110.1073/pnas.1110270109
2CrossRef
sourceidcrossref
recordidcrossref10.1073/pnas.1110270109
issn
000278424
10027-8424
210916490
31091-6490
rsrctypearticle
addtitleProceedings of the National Academy of Sciences
searchscope
0crossref_rest
1CrossRef
2Crossref
3crossref
scope
0crossref_rest
1CrossRef
2Crossref
3crossref
lsr402012201201011717
lsr4120120117
lsr4220120117
lsr4320120117
lsr442011
lsr452011201212012917
tmp012
tmp022
creationdate2012
startdate20120117
enddate20120117
citationpf 811 pt 816 vol 109 issue 3
lsr30VSR-Enriched:[description, subject, pqid]
sort
titleStructural basis for DNA recognition and loading into a viral packaging motor
authorButtner, C. R. ; Chechik, M. ; Ortiz-Lombardia, M. ; Smits, C. ; Ebong, I.-O. ; Chechik, V. ; Jeschke, G. ; Dykeman, E. ; Benini, S. ; Robinson, C. V. ; Alonso, J. C. ; Antson, A. A.
creationdate20120117
lso0120120117
facets
frbrgroupid8965313179123225959
frbrtype5
languageeng
creationdate2012
prefilterarticles
rsrctypearticles
creatorcontrib
0Buttner, C. R.
1Chechik, M.
2Ortiz-Lombardia, M.
3Smits, C.
4Ebong, I.-O.
5Chechik, V.
6Jeschke, G.
7Dykeman, E.
8Benini, S.
9Robinson, C. V.
10Alonso, J. C.
11Antson, A. A.
jtitleProceedings of the National Academy of Sciences
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Buttner
1Chechik
2Ortiz-Lombardia
3Smits
4Ebong
5Jeschke
6Dykeman
7Benini
8Robinson
9Alonso
10Antson
aufirst
0C. R.
1M.
2C.
3I.-O.
4V.
5G.
6E.
7S.
8C. V.
9J. C.
10A. A.
au
0Buttner, C. R.
1Chechik, M.
2Ortiz-Lombardia, M.
3Smits, C.
4Ebong, I.-O.
5Chechik, V.
6Jeschke, G.
7Dykeman, E.
8Benini, S.
9Robinson, C. V.
10Alonso, J. C.
11Antson, A. A.
atitleStructural basis for DNA recognition and loading into a viral packaging motor
jtitleProceedings of the National Academy of Sciences
stitleProceedings of the National Academy of Sciences
risdate20120117
adddate
020120117
12012201201011717
22011
32011201212012917
volume109
issue3
spage811
epage816
pages811-816
issn0027-8424
eissn1091-6490
formatjournal
genrearticle
ristypeJOUR
doi10.1073/pnas.1110270109
lad012
lad25drop record use citations
citing
0$$t=2$$K1=2008$$K2=00664197$$K3=10.1146/annurev.genet.42.110807.091545$$K4=42$$K6=647$$K7=annual review of genetics$$K15=rao$$K16=rao$$K18=rao
1$$t=2$$K1=2011$$K2=17401526$$K3=10.1038/nrmicro2632$$K4=9$$K5=9$$K6=647$$K7=nature reviews microbiology$$K15=casjens$$K16=casjens$$K18=casjens
2$$t=2$$K1=1980$$K2=00928674$$K3=10.1016/0092-8674(80)90468-7$$K4=21$$K5=2$$K6=319$$K7=cell$$K15=earnshaw$$K16=earnshaw$$K18=earnshaw
3$$t=2$$K1=2001$$K2=14764687$$K3=10.1038/35099581$$K4=413$$K5=6857$$K6=748$$K7=nature physical science london$$K15=smith$$K16=smith$$K18=smith
4$$t=2$$K1=2003$$K2=00219258$$K3=10.1074/jbc.M301805200$$K4=278$$K5=26$$K6=23251$$K7=journal of biological chemistry
5$$t=2$$K1=2008$$K2=00928674$$K3=10.1016/j.cell.2008.11.015$$K4=135$$K5=7$$K6=1251$$K7=cell$$K15=sun$$K16=sun$$K18=sun
6$$t=2$$K1=1989$$K2=00664227$$K3=10.1146/annurev.mi.43.100189.001411$$K4=43$$K5=1$$K6=267$$K7=annual review of microbiology$$K15=black$$K16=black$$K18=black
7$$t=2$$K1=2000$$K2=14764687$$K3=10.1038/35047129$$K4=408$$K5=6813$$K6=745$$K7=nature physical science london$$K15=simpson$$K16=simpson$$K18=simpson
8$$t=2$$K1=2007$$K2=02614189$$K3=10.1038/sj.emboj.7601643$$K4=26$$K5=7$$K6=1984$$K7=embo journal$$K15=lebedev$$K16=lebedev$$K18=lebedev
9$$t=2$$K1=2011$$K2=15459993$$K3=10.1038/nsmb.2023$$K4=18$$K5=5$$K6=597$$K7=nature structural amp molecular biology$$K15=olia$$K16=olia$$K18=olia
10$$t=2$$K1=2009$$K2=1469221X$$K3=10.1038/embor.2009.53$$K4=10$$K5=6$$K6=592$$K7=embo reports$$K15=smits$$K16=smits$$K18=smits
11$$t=2$$K1=2008$$K2=00222836$$K3=10.1016/j.jmb.2008.08.050$$K4=383$$K5=3$$K6=494$$K7=journal of molecular biology$$K15=nemecek$$K16=nemecek$$K18=nemecek
12$$t=2$$K1=2002$$K2=10972765$$K3=10.1016/S1097-2765(02)00537-3$$K4=9$$K5=5$$K6=981$$K7=molecular cell$$K15=debeer$$K16=beerde$$K18=beer
13$$t=2$$K1=2010$$K2=00278424$$K3=10.1073/pnas.0908569107$$K4=107$$K5=5$$K6=1971$$K7=pnas
14$$t=2$$K1=1994$$K2=10960341$$K4=202$$K6=930
15$$t=2$$K1=1995$$K2=00222836$$K3=10.1006/jmbi.1995.0505$$K4=252$$K5=4$$K6=386$$K7=journal of molecular biology$$K15=chai$$K16=chai$$K18=chai
16$$t=2$$K1=1994$$K2=00222836$$K3=10.1016/0022-2836(94)90064-7$$K4=236$$K5=5$$K6=1369$$K7=journal of molecular biology$$K15=murzin$$K16=murzin$$K18=murzin
17$$t=2$$K1=2002$$K2=15206882$$K4=74$$K5=6$$K6=1402$$K7=analytical chemistry washington dc$$K15=sobott$$K16=sobott$$K18=sobott
18$$t=2$$K1=2007$$K2=17502799$$K3=10.1038/nprot.2007.73$$K4=2$$K5=3$$K6=715$$K15=hernandez$$K16=hernandez$$K18=hernandez
19$$t=2$$K1=2012$$K2=00278424$$K3=10.1073/pnas.1110224109$$K4=109$$K5=3$$K6=817$$K7=pnas
20$$t=2$$K1=2006$$K2=00222836$$K3=10.1016/j.jmb.2006.01.078$$K4=358$$K5=1$$K6=67$$K7=journal of molecular biology$$K15=kondabagil$$K16=kondabagil$$K18=kondabagil
21$$t=2$$K1=2006$$K2=15204995$$K3=10.1021/bi0615036$$K4=45$$K5=51$$K6=15259$$K15=maluf$$K16=maluf$$K18=maluf
22$$t=2$$K1=2005$$K2=10897690$$K3=10.1063/1.1828435$$K4=122$$K5=2$$K6=024515$$K7=journal of chemical physics$$K15=z  nker$$K16=z  nker$$K18=z  nker
23$$t=2$$K1=2007$$K2=00222836$$K3=10.1016/j.jmb.2007.08.070$$K4=374$$K5=3$$K6=817$$K7=journal of molecular biology$$K15=nemecek$$K16=nemecek$$K18=nemecek
24$$t=2$$K1=2006$$K2=15204995$$K4=45$$K6=5180
25$$t=2$$K1=2005$$K2=00222836$$K3=10.1016/j.jmb.2005.01.016$$K4=347$$K5=3$$K6=523$$K7=journal of molecular biology$$K15=maluf$$K16=maluf$$K18=maluf
26$$t=2$$K1=2002$$K2=00928674$$K3=10.1016/S0092-8674(01)00636-5$$K4=108$$K5=1$$K6=57$$K7=cell$$K15=tahirov$$K16=tahirov$$K18=tahirov
27$$t=2$$K1=2000$$K2=00219258$$K3=10.1074/jbc.M004309200$$K4=275$$K5=45$$K6=35311$$K7=journal of biological chemistry
28$$t=2$$K1=2009$$K2=00219258$$K3=10.1074/jbc.M109.025007$$K4=284$$K5=36$$K6=24490$$K7=journal of biological chemistry
29$$t=2$$K1=1994$$K2=13990047$$K3=10.1107/S0907444994003112$$K4=50$$K5=Pt 5$$K6=760$$K7=acta crystallographica section d biological crystallography$$K15=collaborativecomputationalprojectnumber$$K16=collaborativecomputationalprojectnumber$$K18=collaborativecomputationalprojectnumber
30$$t=2$$K1=1997$$K2=00766879$$K4=276$$K6=307$$K7=methods in enzymology
date2012-01-17