schliessen

Filtern

 

Bibliotheken

Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex

Here, using further optimized 3D culture that allows highly selective induction and long-term growth of human ES cell (hESC)-derived cortical neuroepithelium, we demonstrate unique aspects of self-organization in human neocorticogenesis. Self-organized cortical tissue spontaneously forms a polarity... Full description

Journal Title: Proceedings of the National Academy of Sciences 12/10/2013, Vol.110(50), pp.20284-20289
Main Author: Kadoshima, T.
Other Authors: Sakaguchi, H. , Nakano, T. , Soen, M. , Ando, S. , Eiraku, M. , Sasai, Y.
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0027-8424 ; E-ISSN: 1091-6490 ; DOI: http://dx.doi.org/10.1073/pnas.1315710110
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: crossref10.1073/pnas.1315710110
title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
format: Article
creator:
  • Kadoshima, T.
  • Sakaguchi, H.
  • Nakano, T.
  • Soen, M.
  • Ando, S.
  • Eiraku, M.
  • Sasai, Y.
subjects:
  • Neocortex -- Physiological Aspects
  • Neurophysiology -- Research
ispartof: Proceedings of the National Academy of Sciences, 12/10/2013, Vol.110(50), pp.20284-20289
description: Here, using further optimized 3D culture that allows highly selective induction and long-term growth of human ES cell (hESC)-derived cortical neuroepithelium, we demonstrate unique aspects of self-organization in human neocorticogenesis. Self-organized cortical tissue spontaneously forms a polarity along the dorsocaudal-ventrorostral axis and undergoes region-specific rolling morphogenesis that generates a semispherical structure. The neuroepithelium self-forms a multilayered structure including three neuronal zones (subplate, cortical plate, and Cajal-Retzius cell zones) and three progenitor zones (ventricular, subventricular, and intermediate zones) in the same apical-basal order as seen in the human fetal cortex in the early second trimester. In the cortical plate, late-born neurons tend to localize more basally to early-born neurons, consistent with the inside-out pattern seen in vivo. Furthermore, the outer subventricular zone contains basal progenitors that share characteristics with outer radial glia abundantly found in the human, but not mouse, fetal brain. Thus, human neocorticogenesis involves intrinsic programs that enable the emergence of complex neocortical features. corticogenesis | stratification www.pnas.org/cgi/doi/10.1073/pnas.1315710110
language: eng
source:
identifier: ISSN: 0027-8424 ; E-ISSN: 1091-6490 ; DOI: http://dx.doi.org/10.1073/pnas.1315710110
fulltext: fulltext
issn:
  • 00278424
  • 0027-8424
  • 10916490
  • 1091-6490
url: Link


@attributes
ID778843858
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid10.1073/pnas.1315710110
sourceidcrossref
recordidTN_crossref10.1073/pnas.1315710110
sourceformatXML
sourcesystemPC
pqid1467637921
galeid354085726
display
typearticle
titleSelf-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
creatorKadoshima, T. ; Sakaguchi, H. ; Nakano, T. ; Soen, M. ; Ando, S. ; Eiraku, M. ; Sasai, Y.
ispartofProceedings of the National Academy of Sciences, 12/10/2013, Vol.110(50), pp.20284-20289
identifier
languageeng
source
lds4120131210
subjectNeocortex -- Physiological Aspects ; Neurophysiology -- Research;
descriptionHere, using further optimized 3D culture that allows highly selective induction and long-term growth of human ES cell (hESC)-derived cortical neuroepithelium, we demonstrate unique aspects of self-organization in human neocorticogenesis. Self-organized cortical tissue spontaneously forms a polarity along the dorsocaudal-ventrorostral axis and undergoes region-specific rolling morphogenesis that generates a semispherical structure. The neuroepithelium self-forms a multilayered structure including three neuronal zones (subplate, cortical plate, and Cajal-Retzius cell zones) and three progenitor zones (ventricular, subventricular, and intermediate zones) in the same apical-basal order as seen in the human fetal cortex in the early second trimester. In the cortical plate, late-born neurons tend to localize more basally to early-born neurons, consistent with the inside-out pattern seen in vivo. Furthermore, the outer subventricular zone contains basal progenitors that share characteristics with outer radial glia abundantly found in the human, but not mouse, fetal brain. Thus, human neocorticogenesis involves intrinsic programs that enable the emergence of complex neocortical features. corticogenesis | stratification www.pnas.org/cgi/doi/10.1073/pnas.1315710110
version10
lds50peer_reviewed
links
openurl$$Topenurl_article
thumbnail
0$$TPCamazon_thumb
1$$TPCgoogle_thumb
openurlfulltext$$Topenurlfull_article
addlink$$Uhttp://exlibris-pub.s3.amazonaws.com/aboutCrossref.html$$EView_CrossRef_copyright_notice
search
creatorcontrib
0Kadoshima, T.
1Sakaguchi, H.
2Nakano, T.
3Soen, M.
4Ando, S.
5Eiraku, M.
6Sasai, Y.
titleSelf-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
general
0English
110.1073/pnas.1315710110
2CrossRef
sourceidcrossref
recordidcrossref10.1073/pnas.1315710110
issn
000278424
10027-8424
210916490
31091-6490
rsrctypearticle
addtitleProceedings of the National Academy of Sciences
searchscope
0crossref_rest
1CrossRef
2Crossref
3crossref
scope
0crossref_rest
1CrossRef
2Crossref
3crossref
lsr402013201312121010
lsr4120131210
lsr4220131210
lsr4320131210
lsr442013
lsr452013201311122510
tmp012
tmp022
creationdate2013
startdate20131210
enddate20131210
citationpf 20284 pt 20289 vol 110 issue 50
lsr30VSR-Enriched:[subject, galeid, description, pqid]
sort
titleSelf-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
authorKadoshima, T. ; Sakaguchi, H. ; Nakano, T. ; Soen, M. ; Ando, S. ; Eiraku, M. ; Sasai, Y.
creationdate20131210
lso0120131210
facets
frbrgroupid9077528761433270414
frbrtype5
languageeng
creationdate2013
prefilterarticles
rsrctypearticles
creatorcontrib
0Kadoshima, T.
1Sakaguchi, H.
2Nakano, T.
3Soen, M.
4Ando, S.
5Eiraku, M.
6Sasai, Y.
jtitleProceedings of the National Academy of Sciences
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Kadoshima
1Sakaguchi
2Nakano
3Soen
4Ando
5Eiraku
6Sasai
aufirst
0T.
1H.
2M.
3S.
4Y.
au
0Kadoshima, T.
1Sakaguchi, H.
2Nakano, T.
3Soen, M.
4Ando, S.
5Eiraku, M.
6Sasai, Y.
atitleSelf-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
jtitleProceedings of the National Academy of Sciences
stitleProceedings of the National Academy of Sciences
risdate20131210
adddate
020131210
12013201312121010
22013
32013201311122510
volume110
issue50
spage20284
epage20289
pages20284-20289
issn0027-8424
eissn1091-6490
formatjournal
genrearticle
ristypeJOUR
doi10.1073/pnas.1315710110
lad012
lad25drop record use citations
citing
0$$t=2$$K1=2007$$K2=1471003X$$K3=10.1038/nrn2151$$K4=8$$K5=6$$K6=427$$K7=nature reviews neuroscience$$K15=molyneaux$$K16=molyneaux$$K18=molyneaux
1$$t=2$$K1=2008$$K2=1471003X$$K3=10.1038/nrn2463$$K4=9$$K5=9$$K6=678$$K7=nature reviews neuroscience$$K15=hebert$$K16=hebert$$K18=hebert
2$$t=2$$K1=2005$$K2=10976256$$K3=10.1038/nn1511$$K4=8$$K5=8$$K6=1002$$K7=nature neuroscience$$K15=bielle$$K16=bielle$$K18=bielle
3$$t=2$$K1=2008$$K2=1471003X$$K3=10.1038/nrn2252$$K4=9$$K5=2$$K6=110$$K7=nature reviews neuroscience$$K15=bystron$$K16=bystron$$K18=bystron
4$$t=2$$K1=1974$$K2=00368075$$K3=10.1126/science.183.4123.425$$K4=183$$K5=4123$$K6=425$$K7=science$$K15=rakic$$K16=rakic$$K18=rakic
5$$t=2$$K1=2006$$K2=10976256$$K3=10.1038/nn1694$$K4=9$$K5=6$$K6=743$$K7=nature neuroscience$$K15=shen$$K16=shen$$K18=shen
6$$t=2$$K1=2008$$K2=18759777$$K3=10.1016/j.stem.2008.09.002$$K4=3$$K5=5$$K6=519$$K15=eiraku$$K16=eiraku$$K18=eiraku
7$$t=2$$K1=2005$$K2=10976256$$K3=10.1038/nn1402$$K4=8$$K5=3$$K6=288$$K7=nature neuroscience$$K15=watanabe$$K16=watanabe$$K18=watanabe
8$$t=2$$K1=2012$$K2=19326203$$K4=7$$K6=e53024
9$$t=2$$K1=2012$$K2=00278424$$K3=10.1073/pnas.1202944109$$K4=109$$K5=31$$K6=12770$$K7=pnas
10$$t=2$$K1=2010$$K2=14764687$$K3=10.1038/nature08845$$K4=464$$K5=7288$$K6=554$$K7=nature physical science london$$K15=hansen$$K16=hansen$$K18=hansen
11$$t=2$$K1=2010$$K2=10976256$$K3=10.1038/nn.2553$$K4=13$$K5=6$$K6=690$$K7=nature neuroscience$$K15=fietz$$K16=fietz$$K18=fietz
12$$t=2$$K1=2011$$K2=10976256$$K3=10.1038/nn.2807$$K4=14$$K5=5$$K6=555$$K7=nature neuroscience$$K15=wang$$K16=wang$$K18=wang
13$$t=2$$K1=2011$$K2=02706474$$K3=10.1523/JNEUROSCI.4773-10.2011$$K4=31$$K5=10$$K6=3683$$K7=journal of neuroscience$$K15=shitamukai$$K16=shitamukai$$K18=shitamukai
14$$t=2$$K1=2012$$K2=18759777$$K3=10.1016/j.stem.2012.05.009$$K4=10$$K5=6$$K6=771$$K15=nakano$$K16=nakano$$K18=nakano
15$$t=2$$K1=2007$$K2=10870156$$K3=10.1038/nbt1310$$K4=25$$K5=6$$K6=681$$K7=nature biotechnology$$K15=watanabe$$K16=watanabe$$K18=watanabe
16$$t=2$$K1=2006$$K2=09501991$$K3=10.1242/dev.02324$$K4=133$$K5=9$$K6=1831$$K7=development$$K15=storm$$K16=storm$$K18=storm
17$$t=2$$K1=2004$$K2=09501991$$K3=10.1242/dev.01349$$K4=131$$K5=20$$K6=5031$$K7=development
18$$t=2$$K1=2011$$K2=02706474$$K3=10.1523/JNEUROSCI.5128-10.2011$$K4=31$$K5=5$$K6=1919$$K7=journal of neuroscience$$K15=danjo$$K16=danjo$$K18=danjo
19$$t=2$$K1=2001$$K2=09501991$$K4=128$$K5=2$$K6=193$$K7=development$$K15=yun$$K16=yun$$K18=yun
20$$t=2$$K1=2008$$K2=08966273$$K3=10.1016/j.neuron.2007.12.012$$K4=57$$K5=3$$K6=364$$K7=neuron$$K15=alcamo$$K16=alcamo$$K18=alcamo
21$$t=2$$K1=2003$$K2=10976256$$K3=10.1038/nn1144$$K4=6$$K5=11$$K6=1127$$K7=nature neuroscience$$K15=doetsch$$K16=doetsch$$K18=doetsch
22$$t=2$$K1=1990$$K2=00219967$$K3=10.1002/cne.902970309$$K4=297$$K5=3$$K6=441$$K7=journal of comparative neurology$$K15=kostovic$$K16=kostovic$$K18=kostovic
23$$t=2$$K1=2010$$K2=14697580$$K3=10.1111/j.1469-7580.2010.01274.x$$K4=217$$K5=4$$K6=368$$K7=journal of anatomy$$K15=wang$$K16=wang$$K18=wang
24$$t=2$$K1=2013$$K2=16625161$$K4=7$$K6=423
25$$t=2$$K1=1997$$K2=00219967$$K3=10.1002/(SICI)1096-9861(19970210)378:2<173::AID-CNE2>3.0.CO;2-0$$K4=378$$K5=2$$K6=173$$K7=journal of comparative neurology$$K15=sheppard$$K16=sheppard$$K18=sheppard
26$$t=2$$K1=2013$$K2=20411723$$K4=4$$K6=1665
27$$t=2$$K1=2010$$K2=08966273$$K4=67$$K6=906$$K7=neuron
28$$t=2$$K1=2008$$K2=10473211$$K3=10.1093/cercor/bhm184$$K4=18$$K5=7$$K6=1536$$K7=cerebral cortex
29$$t=2$$K1=2002$$K2=14764687$$K3=10.1038/nature00779$$K4=417$$K5=6889$$K6=645$$K7=nature physical science london$$K15=letinic$$K16=letinic$$K18=letinic
30$$t=2$$K1=2003$$K2=10473211$$K3=10.1093/cercor/13.10.1072$$K4=13$$K5=10$$K6=1072$$K7=cerebral cortex$$K15=rakic$$K16=rakic$$K18=rakic
31$$t=2$$K1=2010$$K2=14697580$$K3=10.1111/j.1469-7580.2010.01283.x$$K4=217$$K5=4$$K6=344$$K7=journal of anatomy$$K15=judas$$K16=judas$$K18=judas
32$$t=2$$K1=2013$$K2=14764687$$K4=501$$K6=373$$K7=nature physical science london
date2013-12-10