schliessen

Filtern

 

Bibliotheken

Twistable electronics with dynamically rotatable heterostructures

Controlling two-dimensional twist In heterostructures assembled from two-dimensional materials such as graphene, electron tunneling between layers varies strongly with the rotation angle between the crystal lattices. Usually, the twist angle between layers is fixed after assembly. Ribeiro-Palau et a... Full description

Journal Title: Science 08/17/2018, Vol.361(6403), pp.690-693
Main Author: Ribeiro-Palau, Rebeca
Other Authors: Zhang, Changjian , Watanabe, Kenji , Taniguchi, Takashi , Hone, James , Dean, Cory R.
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0036-8075 ; E-ISSN: 1095-9203 ; DOI: http://dx.doi.org/10.1126/science.aat6981
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: crossref10.1126/science.aat6981
title: Twistable electronics with dynamically rotatable heterostructures
format: Article
creator:
  • Ribeiro-Palau, Rebeca
  • Zhang, Changjian
  • Watanabe, Kenji
  • Taniguchi, Takashi
  • Hone, James
  • Dean, Cory R.
subjects:
  • Electronics
  • Crystal Lattices
  • Boron
  • Encapsulation
  • Graphene
  • Boron
  • Properties (Attributes)
  • Interlayers
  • Atomic Force Microscopy
  • Electronic Devices
  • Crystal Structure
  • Heterostructures
  • Rotation
  • Boron
  • Atomic Force Microscopy
  • Electronic Equipment
  • Boron Nitride
  • Electron Tunneling
  • Superlattices
ispartof: Science, 08/17/2018, Vol.361(6403), pp.690-693
description: Controlling two-dimensional twist In heterostructures assembled from two-dimensional materials such as graphene, electron tunneling between layers varies strongly with the rotation angle between the crystal lattices. Usually, the twist angle between layers is fixed after assembly. Ribeiro-Palau et al. encapsulated graphene with boron nitride, but the top boron nitride flake was shaped so that an atomic force microscope tip could push on it to vary the twist angle by as little as 0.2°. They observed variations with twist angle in properties such as the charge neutrality point, which would be difficult to observe in static rotated structures. Science, this issue p. 690 In heterostructures of two-dimensional materials, electronic properties can vary dramatically with relative interlayer angle. This effect makes it theoretically possible to realize a new class of twistable electronics in which properties can be manipulated on demand by means of rotation. We demonstrate a device architecture in which a layered heterostructure can be dynamically twisted in situ. We study graphene encapsulated by boron nitride, where, at small rotation angles, the device characteristics are dominated by coupling to a long-wavelength moiré superlattice. The ability to investigate arbitrary rotation angle in a single device reveals features of the optical, mechanical, and electronic response in this system not captured in static rotation studies. Our results establish the capability to fabricate twistable electronic devices with dynamically tunable properties.
language: eng
source:
identifier: ISSN: 0036-8075 ; E-ISSN: 1095-9203 ; DOI: http://dx.doi.org/10.1126/science.aat6981
fulltext: fulltext
issn:
  • 00368075
  • 0036-8075
  • 10959203
  • 1095-9203
url: Link


@attributes
ID1668698631
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid10.1126/science.aat6981
sourceidcrossref
recordidTN_crossref10.1126/science.aat6981
sourceformatXML
sourcesystemOther
pqid2089316802
galeid553341075
display
typearticle
titleTwistable electronics with dynamically rotatable heterostructures
creatorRibeiro-Palau, Rebeca ; Zhang, Changjian ; Watanabe, Kenji ; Taniguchi, Takashi ; Hone, James ; Dean, Cory R.
ispartofScience, 08/17/2018, Vol.361(6403), pp.690-693
identifier
languageeng
source
lds4120180817
subjectElectronics ; Crystal Lattices ; Boron ; Encapsulation ; Graphene ; Boron ; Properties (Attributes) ; Interlayers ; Atomic Force Microscopy ; Electronic Devices ; Crystal Structure ; Heterostructures ; Rotation ; Boron ; Atomic Force Microscopy ; Electronic Equipment ; Boron Nitride ; Electron Tunneling ; Superlattices;
descriptionControlling two-dimensional twist In heterostructures assembled from two-dimensional materials such as graphene, electron tunneling between layers varies strongly with the rotation angle between the crystal lattices. Usually, the twist angle between layers is fixed after assembly. Ribeiro-Palau et al. encapsulated graphene with boron nitride, but the top boron nitride flake was shaped so that an atomic force microscope tip could push on it to vary the twist angle by as little as 0.2°. They observed variations with twist angle in properties such as the charge neutrality point, which would be difficult to observe in static rotated structures. Science, this issue p. 690 In heterostructures of two-dimensional materials, electronic properties can vary dramatically with relative interlayer angle. This effect makes it theoretically possible to realize a new class of twistable electronics in which properties can be manipulated on demand by means of rotation. We demonstrate a device architecture in which a layered heterostructure can be dynamically twisted in situ. We study graphene encapsulated by boron nitride, where, at small rotation angles, the device characteristics are dominated by coupling to a long-wavelength moiré superlattice. The ability to investigate arbitrary rotation angle in a single device reveals features of the optical, mechanical, and electronic response in this system not captured in static rotation studies. Our results establish the capability to fabricate twistable electronic devices with dynamically tunable properties.
version4
lds50peer_reviewed
links
openurl$$Topenurl_article
thumbnail
0$$TPCamazon_thumb
1$$TPCgoogle_thumb
openurlfulltext$$Topenurlfull_article
addlink$$Uhttp://exlibris-pub.s3.amazonaws.com/aboutCrossref.html$$EView_CrossRef_copyright_notice
search
creatorcontrib
0Ribeiro-Palau, Rebeca
1Zhang, Changjian
2Watanabe, Kenji
3Taniguchi, Takashi
4Hone, James
5Dean, Cory R.
titleTwistable electronics with dynamically rotatable heterostructures
general
0English
110.1126/science.aat6981
2American Association for the Advancement of Science (via CrossRef)
3American Association for the Advancement of Science (CrossRef)
sourceidcrossref
recordidcrossref10.1126/science.aat6981
issn
000368075
10036-8075
210959203
31095-9203
rsrctypearticle
addtitleScience
searchscope
0crossref_aafas
1CrossRef
2Crossref
3crossref
scope
0crossref_aafas
1CrossRef
2Crossref
3crossref
lsr402018201808081617
lsr4120180817
lsr4220180816
lsr4320180817
lsr442018
lsr452018201808081617
tmp012
tmp022
creationdate2018
startdate20180817
enddate20180817
citationpf 690 pt 693 vol 361 issue 6403
lsr30VSR-Enriched:[pqid, subject, description, galeid]
sort
titleTwistable electronics with dynamically rotatable heterostructures
authorRibeiro-Palau, Rebeca ; Zhang, Changjian ; Watanabe, Kenji ; Taniguchi, Takashi ; Hone, James ; Dean, Cory R.
creationdate20180817
lso0120180817
facets
frbrgroupid7425128159096419691
frbrtype5
newrecords20190101
languageeng
creationdate2018
collectionAmerican Association for the Advancement of Science (CrossRef)
prefilterarticles
rsrctypearticles
creatorcontrib
0Ribeiro-Palau, Rebeca
1Zhang, Changjian
2Watanabe, Kenji
3Taniguchi, Takashi
4Hone, James
5Dean, Cory R.
jtitleScience
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Ribeiro-Palau
1Zhang
2Watanabe
3Taniguchi
4Hone
5Dean
aufirst
0Rebeca
1Changjian
2Kenji
3Takashi
4James
5Cory R.
au
0Ribeiro-Palau, Rebeca
1Zhang, Changjian
2Watanabe, Kenji
3Taniguchi, Takashi
4Hone, James
5Dean, Cory R.
atitleTwistable electronics with dynamically rotatable heterostructures
jtitleScience
stitleScience
risdate20180817
adddate
020180816
12018201808081617
220180817
32018
volume361
issue6403
spage690
epage693
pages690-693
issn0036-8075
eissn1095-9203
formatjournal
genrearticle
ristypeJOUR
doi10.1126/science.aat6981
lad012
citing
0$$t=2$$K3=10.1103/PhysRevB.95.075420
1$$t=2$$K3=10.1038/ncomms2817
2$$t=2$$K3=10.1038/nnano.2014.187
3$$t=2$$K3=10.1038/nphys3507
4$$t=2$$K3=10.1021/nl503756y
5$$t=2$$K3=10.1021/acs.nanolett.6b01657
6$$t=2$$K3=10.1038/nnano.2016.85
7$$t=2$$K3=10.1126/science.aaf4621
8$$t=2$$K3=10.1103/PhysRevLett.119.107201
9$$t=2$$K3=10.1103/PhysRevLett.117.116804
10$$t=2$$K3=10.1038/nnano.2016.214
11$$t=2$$K3=10.1038/nature14364
12$$t=2$$K3=10.1038/nnano.2016.3
13$$t=2$$K3=10.1038/nature26160
14$$t=2$$K3=10.1103/PhysRevLett.115.187002
15$$t=2$$K3=10.1126/science.aac7820
16$$t=2$$K3=10.1038/ncomms7242
17$$t=2$$K3=10.1038/nphys2272
18$$t=2$$K3=10.1038/nphys2954
19$$t=2$$K3=10.1126/science.1237240
20$$t=2$$K3=10.1038/nature12187
21$$t=2$$K3=10.1038/nature12186
22$$t=2$$K3=10.1021/acs.nanolett.5b05263
23$$t=2$$K3=10.1103/PhysRevLett.116.126101
24$$t=2$$K3=10.1038/ncomms10800
25$$t=2$$K3=10.1126/science.1244358
26$$t=2$$K3=10.1038/nnano.2010.172
27$$t=2$$K3=10.1021/nl402679b
28$$t=2$$K3=10.1038/ncomms9429
29$$t=2$$K3=10.1103/PhysRevLett.92.126101
30$$t=2$$K3=10.1103/PhysRevLett.108.205503
31$$t=2$$K3=10.1103/PhysRevLett.100.046102
32$$t=2$$K3=10.1103/PhysRevB.94.045401
33$$t=2$$K3=10.1126/science.aad2102
34$$t=2$$K3=10.1038/ncomms5461
35$$t=2$$K3=10.1103/PhysRevLett.111.266801
36$$t=2$$K3=10.1103/PhysRevB.35.2243
37$$t=2$$K3=10.1103/PhysRevLett.54.2111
date2018-08-17