schliessen

Filtern

 

Bibliotheken

PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection

The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.1,2 Here we show that the mitochondrial biogenesis regulator, PGC1α,3,4 is... Full description

Journal Title: Tran M. T., Z. K. Zsengeller, A. H. Berg, E. V. Khankin, M. K. Bhasin, W. Kim, C. B. Clish, et al. 2016. “PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection.” Nature 531 (7595): 528-532. doi:10.1038/nature17184. http://dx.doi.org/10.1038/nature17184.
Main Author: Tran, Mei T.
Other Authors: Zsengeller, Zsuzsanna K. , Berg, Anders H. , Khankin, Eliyahu V. , Bhasin, Manoj K. , Kim, Wondong , Clish, Clary B. , Stillman, Isaac E. , Karumanchi, S. Ananth , Rhee, Eugene P. , Parikh, Samir M.
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0028-0836 ; DOI: 10.1038/nature17184
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: dash1/29407549
title: PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
format: Article
creator:
  • Tran, Mei T.
  • Zsengeller, Zsuzsanna K.
  • Berg, Anders H.
  • Khankin, Eliyahu V.
  • Bhasin, Manoj K.
  • Kim, Wondong
  • Clish, Clary B.
  • Stillman, Isaac E.
  • Karumanchi, S. Ananth
  • Rhee, Eugene P.
  • Parikh, Samir M.
subjects:
  • Sciences (General)
  • Physics
ispartof: Tran, M. T., Z. K. Zsengeller, A. H. Berg, E. V. Khankin, M. K. Bhasin, W. Kim, C. B. Clish, et al. 2016. “PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection.” Nature 531 (7595): 528-532. doi:10.1038/nature17184. http://dx.doi.org/10.1038/nature17184.
description: The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.1,2 Here we show that the mitochondrial biogenesis regulator, PGC1α,3,4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α−/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α−/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE2, a secreted autocoid that maintains renal function.5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.
language: eng
source:
identifier: ISSN: 0028-0836 ; DOI: 10.1038/nature17184
fulltext: fulltext_linktorsrc
issn:
  • 0028-0836
  • 00280836
url: Link


@attributes
ID1599109097
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1/29407549
sourceiddash
recordidTN_dash1/29407549
sourcesystemPC
pqid1781813257
display
typearticle
titlePGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
creatorTran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.
ispartofTran, M. T., Z. K. Zsengeller, A. H. Berg, E. V. Khankin, M. K. Bhasin, W. Kim, C. B. Clish, et al. 2016. “PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection.” Nature 531 (7595): 528-532. doi:10.1038/nature17184. http://dx.doi.org/10.1038/nature17184.
identifierISSN: 0028-0836 ; DOI: 10.1038/nature17184
descriptionThe energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.1,2 Here we show that the mitochondrial biogenesis regulator, PGC1α,3,4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α−/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α−/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE2, a secreted autocoid that maintains renal function.5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.
languageeng
source
subjectSciences (General) ; Physics;
version6
oafree_for_read
lds50peer_reviewed
links
openurl$$Topenurl_article
backlink
0$$Uhttp://dx.doi.org/10.1038/nature17184$$EView_record
1$$Uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909121/pdf/$$EView_record
linktorsrc$$Uhttp://nrs.harvard.edu/urn-3:HUL.InstRepos:29407549$$EView_full_text_in_Digital_Access_to_Scholarship_at_Harvard_(DASH)
openurlfulltext$$Topenurlfull_article
search
creatorcontrib
0Tran, Mei T.
1Zsengeller, Zsuzsanna K.
2Berg, Anders H.
3Khankin, Eliyahu V.
4Bhasin, Manoj K.
5Kim, Wondong
6Clish, Clary B.
7Stillman, Isaac E.
8Karumanchi, S. Ananth
9Rhee, Eugene P.
10Parikh, Samir M.
titlePGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
descriptionThe energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.1,2 Here we show that the mitochondrial biogenesis regulator, PGC1α,3,4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α−/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α−/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE2, a secreted autocoid that maintains renal function.5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.
general
0Digital Access to Scholarship at Harvard (DASH)
1English
210.1038/nature17184
sourceiddash
recordiddash1/29407549
issn
00028-0836
100280836
rsrctypearticle
creationdate2016
searchscopedash
scopedash
lsr30VSR-Enriched:[pqid, issue, pages, eissn, subject, vol]
sort
titlePGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
authorTran, Mei T. ; Zsengeller, Zsuzsanna K. ; Berg, Anders H. ; Khankin, Eliyahu V. ; Bhasin, Manoj K. ; Kim, Wondong ; Clish, Clary B. ; Stillman, Isaac E. ; Karumanchi, S. Ananth ; Rhee, Eugene P. ; Parikh, Samir M.
creationdate20160000
facets
frbrgroupid8870026479268829616
frbrtype5
newrecords20170302
languageeng
creationdate2016
collectionDASH (Harvard Library)
prefilterarticles
rsrctypearticles
creatorcontrib
0Tran, Mei T
1Zsengeller, Zsuzsanna K
2Berg, Anders H
3Khankin, Eliyahu V
4Bhasin, Manoj K
5Kim, Wondong
6Clish, Clary B
7Stillman, Isaac E
8Karumanchi, S. Ananth
9Rhee, Eugene P
10Parikh, Samir M
jtitleNature
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext_linktorsrc
addata
aulast
0Tran
1Zsengeller
2Berg
3Khankin
4Bhasin
5Kim
6Clish
7Stillman
8Karumanchi
9Rhee
10Parikh
aufirst
0Mei T.
1Zsuzsanna K.
2Anders H.
3Eliyahu V.
4Manoj K.
5Wondong
6Clary B.
7Isaac E.
8S. Ananth
9Eugene P.
10Samir M.
au
0Tran, Mei T.
1Zsengeller, Zsuzsanna K.
2Berg, Anders H.
3Khankin, Eliyahu V.
4Bhasin, Manoj K.
5Kim, Wondong
6Clish, Clary B.
7Stillman, Isaac E.
8Karumanchi, S. Ananth
9Rhee, Eugene P.
10Parikh, Samir M.
atitlePGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection
jtitleNature
date2016
risdate2016
issn0028-0836
genrearticle
ristypeJOUR
abstractThe energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischemia. Indeed, acute kidney injury (AKI) affects 3% of all hospitalized patients.1,2 Here we show that the mitochondrial biogenesis regulator, PGC1α,3,4 is a pivotal determinant of renal recovery from injury by regulating NAD biosynthesis. Following renal ischemia, PGC1α−/− mice developed local deficiency of the NAD precursor niacinamide (Nam), marked fat accumulation, and failure to re-establish normal function. Remarkably, exogenous Nam improved local NAD levels, fat accumulation, and renal function in post-ischemic PGC1α−/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulated the effects of Nam supplementation, including more local NAD and less fat accumulation with better renal function after ischemia. PGC1α coordinately upregulated the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuated the de novo pathway. Nam enhanced NAD via the enzyme NAMPT and augmented production of the fat breakdown product beta-hydroxybutyrate (β-OHB), leading to increased prostaglandin PGE2, a secreted autocoid that maintains renal function.5 Nam treatment reversed established ischemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-OHB signaling or prostaglandins similarly abolished PGC1α-dependent renoprotection. Given the importance of mitochondrial health in aging and the function of metabolically active organs, the results implicate Nam and NAD as key effectors for achieving PGC1α-dependent stress resistance.
doi10.1038/nature17184
urlhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909121/pdf/
issue7595
pages528-52832
volume531
eissn14764687
oafree_for_read