schliessen

Filtern

 

Bibliotheken

Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study

Due to the magnetic nature of Fe, various phenomena during structural transitions in Fe-based alloys, including martensitic transition (MT), cannot be accurately interpreted even by the state-of-the-art first-principles methods based on density functional theory (DFT), which is mostly limited to zer... Full description

Journal Title: Acta Materialia 01 April 2018, Vol.147, pp.261-276
Main Author: Wang, Kang
Other Authors: Shang, Shun-Li , Wang, Yi , Liu, Zi-Kui , Liu, Feng
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 1359-6454 ; E-ISSN: 1873-2453 ; DOI: 10.1016/j.actamat.2018.01.013
Link: https://www.sciencedirect.com/science/article/pii/S1359645418300442
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: elsevier_sdoi_10_1016_j_actamat_2018_01_013
title: Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study
format: Article
creator:
  • Wang, Kang
  • Shang, Shun-Li
  • Wang, Yi
  • Liu, Zi-Kui
  • Liu, Feng
subjects:
  • Thermodynamics
  • First-Principles
  • Bain Path
  • Martensitic Transition
  • Engineering
ispartof: Acta Materialia, 01 April 2018, Vol.147, pp.261-276
description: Due to the magnetic nature of Fe, various phenomena during structural transitions in Fe-based alloys, including martensitic transition (MT), cannot be accurately interpreted even by the state-of-the-art first-principles methods based on density functional theory (DFT), which is mostly limited to zero Kelvin. In the present work, thermodynamics and kinetics of Bain transition in pure Fe, i.e. the simplest model for fcc/bcc transition, are studied by analyzing the minimum energy path (MEP) at finite temperatures. Energies of various lattices and magnetic configurations at ground state are calculated by the standard DFT methods, which are further fitted by the Birch-Murnaghan equation of state (EOS) to obtain the ground state properties. By combing the quasi-harmonic Debye-Grüneisen model with the magnetic partition function approach (PFA), the Helmholtz energies for the body-centered tetragonal lattices with fixed / ratio and volume ( ) are calculated, where the PFA accounts for the fluctuations of the magnetic configurations. Using free energy surface in the { / , } space, the MEP is searched and a correlation between driving force and energy barrier for the fcc/bcc transition is observed. Further combined with previous heterogeneous nucleation models for MT, the correlation shown in the present work is found to be ubiquitous of MTs, and thus governing the formation of martensite.
language: eng
source:
identifier: ISSN: 1359-6454 ; E-ISSN: 1873-2453 ; DOI: 10.1016/j.actamat.2018.01.013
fulltext: no_fulltext
issn:
  • 1359-6454
  • 13596454
  • 1873-2453
  • 18732453
url: Link


@attributes
ID701114182
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordiddoi_10_1016_j_actamat_2018_01_013
sourceidelsevier_s
recordidTN_elsevier_sdoi_10_1016_j_actamat_2018_01_013
sourcesystemOther
dbid
0--K
1--M
2.~1
31B1
41~.
5457
64G.
77-5
88P~
9AABNK
10AAEDT
11AAEPC
12AAKOC
13AAOAW
14AAQFI
15ABFNM
16ABXRA
17ABYKQ
18ACDAQ
19ACRLP
20AEKER
21AEZYN
22AFKWA
23AFTJW
24AGHFR
25AGUBO
26AGYEJ
27AIKHN
28AITUG
29AIVDX
30AJBFU
31AJOXV
32AMFUW
33BLXMC
34EO8
35EO9
36EP2
37EP3
38FDB
39FIRID
40FNPLU
41G-Q
42GBLVA
43J1W
44KOM
45MAGPM
46OAUVE
47OGIMB
48P-8
49P-9
50PC.
51Q38
52RPZ
53SDF
54SDG
55SDP
56SES
57SPC
58SPD
59SSM
60SSQ
61SSZ
62T5K
63~G-
galeid579106494
display
typearticle
titleMartensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study
creatorWang, Kang ; Shang, Shun-Li ; Wang, Yi ; Liu, Zi-Kui ; Liu, Feng
ispartofActa Materialia, 01 April 2018, Vol.147, pp.261-276
identifier
subjectThermodynamics ; First-Principles ; Bain Path ; Martensitic Transition ; Engineering
descriptionDue to the magnetic nature of Fe, various phenomena during structural transitions in Fe-based alloys, including martensitic transition (MT), cannot be accurately interpreted even by the state-of-the-art first-principles methods based on density functional theory (DFT), which is mostly limited to zero Kelvin. In the present work, thermodynamics and kinetics of Bain transition in pure Fe, i.e. the simplest model for fcc/bcc transition, are studied by analyzing the minimum energy path (MEP) at finite temperatures. Energies of various lattices and magnetic configurations at ground state are calculated by the standard DFT methods, which are further fitted by the Birch-Murnaghan equation of state (EOS) to obtain the ground state properties. By combing the quasi-harmonic Debye-Grüneisen model with the magnetic partition function approach (PFA), the Helmholtz energies for the body-centered tetragonal lattices with fixed / ratio and volume ( ) are calculated, where the PFA accounts for the fluctuations of the magnetic configurations. Using free energy surface in the { / , } space, the MEP is searched and a correlation between driving force and energy barrier for the fcc/bcc transition is observed. Further combined with previous heterogeneous nucleation models for MT, the correlation shown in the present work is found to be ubiquitous of MTs, and thus governing the formation of martensite.
languageeng
source
version3
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645418300442$$EView_record_in_ScienceDirect_(Access_to_full_text_may_be_restricted)
search
creatorcontrib
0Wang, Kang
1Shang, Shun-Li
2Wang, Yi
3Liu, Zi-Kui
4Liu, Feng
titleMartensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study
description
subject
0Thermodynamics
1First-Principles
2Bain Path
3Martensitic Transition
4Engineering
general
0English
1Elsevier Ltd
210.1016/j.actamat.2018.01.013
3ScienceDirect (Elsevier B.V.)
4ScienceDirect Journals (Elsevier)
sourceidelsevier_s
recordidelsevier_sdoi_10_1016_j_actamat_2018_01_013
issn
01359-6454
113596454
21873-2453
318732453
rsrctypearticle
creationdate2018
addtitleActa Materialia
searchscope
0elsevier_full
1elsevier2
scope
0elsevier_full
1elsevier2
lsr44$$EView_record_in_ScienceDirect_(Access_to_full_text_may_be_restricted)
tmp01ScienceDirect Journals (Elsevier)
tmp02
0--K
1--M
2.~1
31B1
41~.
5457
64G.
77-5
88P~
9AABNK
10AAEDT
11AAEPC
12AAKOC
13AAOAW
14AAQFI
15ABFNM
16ABXRA
17ABYKQ
18ACDAQ
19ACRLP
20AEKER
21AEZYN
22AFKWA
23AFTJW
24AGHFR
25AGUBO
26AGYEJ
27AIKHN
28AITUG
29AIVDX
30AJBFU
31AJOXV
32AMFUW
33BLXMC
34EO8
35EO9
36EP2
37EP3
38FDB
39FIRID
40FNPLU
41G-Q
42GBLVA
43J1W
44KOM
45MAGPM
46OAUVE
47OGIMB
48P-8
49P-9
50PC.
51Q38
52RPZ
53SDF
54SDG
55SDP
56SES
57SPC
58SPD
59SSM
60SSQ
61SSZ
62T5K
63~G-
startdate20180401
enddate20180401
lsr40Acta Materialia, 01 April 2018, Vol.147, pp.261-276
doi10.1016/j.actamat.2018.01.013
citationpf 261 pt 276 vol 147
lsr30VSR-Enriched:[orcidid, galeid]
sort
titleMartensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study
authorWang, Kang ; Shang, Shun-Li ; Wang, Yi ; Liu, Zi-Kui ; Liu, Feng
creationdate20180401
lso0120180401
facets
frbrgroupid7653176040219767922
frbrtype5
newrecords20190904
languageeng
topic
0Thermodynamics
1First-Principles
2Bain Path
3Martensitic Transition
4Engineering
collectionScienceDirect (Elsevier B.V.)
prefilterarticles
rsrctypearticles
creatorcontrib
0Wang, Kang
1Shang, Shun-Li
2Wang, Yi
3Liu, Zi-Kui
4Liu, Feng
jtitleActa Materialia
creationdate2018
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
aulast
0Wang
1Shang
2Liu
aufirst
0Kang
1Shun-Li
2Yi
3Zi-Kui
4Feng
auinitK
auinit1K
au
0Wang, Kang
1Shang, Shun-Li
2Wang, Yi
3Liu, Zi-Kui
4Liu, Feng
atitleMartensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study
jtitleActa Materialia
risdate20180401
volume147
spage261
epage276
pages261-276
issn1359-6454
eissn1873-2453
formatjournal
genrearticle
ristypeJOUR
abstract
pubElsevier Ltd
doi10.1016/j.actamat.2018.01.013
lad01Acta Materialia
orcidid0000-0002-7329-6813
date2018-04-01