schliessen

Filtern

 

Bibliotheken

Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding

A nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg–Gd–Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the defo... Full description

Journal Title: Applied Surface Science 2009, Vol.256(3), pp.619-626
Main Author: Xu, Kaidong
Other Authors: Wang, Aihua , Wang, Yang , Dong, Xuanpu , Zhang, Xianglin , Huang, Zaowen
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0169-4332 ; E-ISSN: 1873-5584 ; DOI: 10.1016/j.apsusc.2009.06.098
Link: http://dx.doi.org/10.1016/j.apsusc.2009.06.098
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: elsevier_sdoi_10_1016_j_apsusc_2009_06_098
title: Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding
format: Article
creator:
  • Xu, Kaidong
  • Wang, Aihua
  • Wang, Yang
  • Dong, Xuanpu
  • Zhang, Xianglin
  • Huang, Zaowen
subjects:
  • Rare Earth Mg Alloy
  • Hvof-Smb
  • Twinning
  • Dynamic Recrystallization
  • Nano-Grain Size
  • Rare Earth Mg Alloy
  • Hvof-Smb
  • Twinning
  • Dynamic Recrystallization
  • Nano-Grain Size
  • Engineering
ispartof: Applied Surface Science, 2009, Vol.256(3), pp.619-626
description: A nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg–Gd–Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the deformed layer were characterized by optical microscopy (OM), transmission electron microscopy (T) and high-resolution transmission electron microscopy (HRT) with an aim to reveal the formation mechanism. Results showed that three steps during grain refinement process were found, i.e., twinning dominates the plastic deformation and divides the coarse grains into finer twin platelets at the initial stage, stacking faults are generated and a number of dislocation slip systems are activated leading to the cross slips with increasing strain and strain rate, eventually high-density dislocation networks, dislocation cells and dislocation arrays are formed, which further subdivides the...
language: eng
source:
identifier: ISSN: 0169-4332 ; E-ISSN: 1873-5584 ; DOI: 10.1016/j.apsusc.2009.06.098
fulltext: fulltext
issn:
  • 0169-4332
  • 01694332
  • 1873-5584
  • 18735584
url: Link


@attributes
ID514977398
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordiddoi_10_1016_j_apsusc_2009_06_098
sourceidelsevier_s
recordidTN_elsevier_sdoi_10_1016_j_apsusc_2009_06_098
sourcesystemPC
dbid
0--K
1--M
2.~1
31B1
41RT
51~.
6457
74G.
87-5
98P~
109JN
11AABNK
12AAEDT
13AAEPC
14AAKOC
15AAOAW
16AAQFI
17AARLI
18ABFNM
19ABXRA
20ABYKQ
21ACDAQ
22ACFVG
23ACRLP
24ADALY
25ADECG
26AEKER
27AEZYN
28AFKWA
29AFTJW
30AGHFR
31AGUBO
32AGYEJ
33AHHHB
34AIKHN
35AITUG
36AIVDX
37AJBFU
38AJOXV
39AJSZI
40AMFUW
41BLXMC
42EO8
43EO9
44EP2
45EP3
46FDB
47FGOYB
48FIRID
49FLBIZ
50FNPLU
51G-Q
52GBLVA
53HMV
54J1W
55KOM
56MAGPM
57OAUVE
58OGIMB
59P-8
60P-9
61PC.
62Q38
63R2-
64RPZ
65SCB
66SDF
67SDG
68SDP
69SES
70SEW
71SMS
72SPC
73SPD
74SPG
75SSK
76SSM
77SSQ
78SSZ
79T5K
80~G-
pqid36240310
galeid255774159
display
typearticle
titleSurface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding
creatorXu, Kaidong ; Wang, Aihua ; Wang, Yang ; Dong, Xuanpu ; Zhang, Xianglin ; Huang, Zaowen
ispartofApplied Surface Science, 2009, Vol.256(3), pp.619-626
identifier
subjectRare Earth Mg Alloy ; Hvof-Smb ; Twinning ; Dynamic Recrystallization ; Nano-Grain Size ; Rare Earth Mg Alloy ; Hvof-Smb ; Twinning ; Dynamic Recrystallization ; Nano-Grain Size ; Engineering
descriptionA nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg–Gd–Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the deformed layer were characterized by optical microscopy (OM), transmission electron microscopy (T) and high-resolution transmission electron microscopy (HRT) with an aim to reveal the formation mechanism. Results showed that three steps during grain refinement process were found, i.e., twinning dominates the plastic deformation and divides the coarse grains into finer twin platelets at the initial stage, stacking faults are generated and a number of dislocation slip systems are activated leading to the cross slips with increasing strain and strain rate, eventually high-density dislocation networks, dislocation cells and dislocation arrays are formed, which further subdivides the...
languageeng
source
version4
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://dx.doi.org/10.1016/j.apsusc.2009.06.098$$EView_record_in_ScienceDirect_(Access_to_full_text_may_be_restricted)
search
creatorcontrib
0Xu, Kaidong
1Wang, Aihua
2Wang, Yang
3Dong, Xuanpu
4Zhang, Xianglin
5Huang, Zaowen
titleSurface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding
description

A nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg–Gd–Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the deformed layer were characterized by optical microscopy (OM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) with an aim to reveal the formation mechanism. Results showed that three steps during grain refinement process were found, i.e., twinning dominates the plastic deformation and divides the coarse grains into finer twin platelets at the initial stage, stacking faults are generated and a number of dislocation slip systems are activated leading to the cross slips with increasing strain and strain rate, eventually high-density dislocation networks, dislocation cells and dislocation arrays are formed, which further subdivides the...

subject
0Rare Earth Mg Alloy
1Hvof-Smb
2Twinning
3Dynamic Recrystallization
4Nano-Grain Size
5Engineering
general
0English
1Elsevier B.V
210.1016/j.apsusc.2009.06.098
3ScienceDirect (Elsevier)
4ScienceDirect Journals (Elsevier)
sourceidelsevier_s
recordidelsevier_sdoi_10_1016_j_apsusc_2009_06_098
issn
00169-4332
101694332
21873-5584
318735584
rsrctypearticle
creationdate2009
addtitleApplied Surface Science
searchscope
0elsevier_full
1elsevier2
scope
0elsevier_full
1elsevier2
lsr44$$EView_record_in_ScienceDirect_(Access_to_full_text_may_be_restricted)
tmp01ScienceDirect Journals (Elsevier)
tmp02
0--K
1--M
2.~1
31B1
41RT
51~.
6457
74G.
87-5
98P~
109JN
11AABNK
12AAEDT
13AAEPC
14AAKOC
15AAOAW
16AAQFI
17AARLI
18ABFNM
19ABXRA
20ABYKQ
21ACDAQ
22ACFVG
23ACRLP
24ADALY
25ADECG
26AEKER
27AEZYN
28AFKWA
29AFTJW
30AGHFR
31AGUBO
32AGYEJ
33AHHHB
34AIKHN
35AITUG
36AIVDX
37AJBFU
38AJOXV
39AJSZI
40AMFUW
41BLXMC
42EO8
43EO9
44EP2
45EP3
46FDB
47FGOYB
48FIRID
49FLBIZ
50FNPLU
51G-Q
52GBLVA
53HMV
54J1W
55KOM
56MAGPM
57OAUVE
58OGIMB
59P-8
60P-9
61PC.
62Q38
63R2-
64RPZ
65SCB
66SDF
67SDG
68SDP
69SES
70SEW
71SMS
72SPC
73SPD
74SPG
75SSK
76SSM
77SSQ
78SSZ
79T5K
80~G-
startdate20090101
enddate20091231
lsr40Applied Surface Science, 2009, Vol.256 (3), pp.619-626
doi10.1016/j.apsusc.2009.06.098
citationpf 619 pt 626 vol 256 issue 3
lsr30VSR-Enriched:[pqid, galeid]
sort
titleSurface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding
authorXu, Kaidong ; Wang, Aihua ; Wang, Yang ; Dong, Xuanpu ; Zhang, Xianglin ; Huang, Zaowen
creationdate20090000
lso0120090000
facets
frbrgroupid8432398614275131864
frbrtype5
newrecords20190904
languageeng
topic
0Rare Earth Mg Alloy
1Hvof-Smb
2Twinning
3Dynamic Recrystallization
4Nano-Grain Size
5Engineering
collectionScienceDirect (Elsevier)
prefilterarticles
rsrctypearticles
creatorcontrib
0Xu, Kaidong
1Wang, Aihua
2Wang, Yang
3Dong, Xuanpu
4Zhang, Xianglin
5Huang, Zaowen
jtitleApplied Surface Science
creationdate2009
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Xu
1Wang
2Dong
3Zhang
4Huang
aufirst
0Kaidong
1Aihua
2Yang
3Xuanpu
4Xianglin
5Zaowen
auinitK
auinit1K
au
0Xu, Kaidong
1Wang, Aihua
2Wang, Yang
3Dong, Xuanpu
4Zhang, Xianglin
5Huang, Zaowen
atitleSurface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding
jtitleApplied Surface Science
date2009
risdate2009
volume256
issue3
spage619
epage626
pages619-626
issn0169-4332
eissn1873-5584
formatjournal
genrearticle
ristypeJOUR
abstract

A nanostructured surface layer with a thickness up to 60 μm was produced on a rare earth Mg–Gd–Y magnesium alloy using a new process named HVOF-SMB (high velocity oxygen-fuel flame supersonic microparticles bombarding). The microstructural features of the treated surface at various depth of the deformed layer were characterized by optical microscopy (OM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) with an aim to reveal the formation mechanism. Results showed that three steps during grain refinement process were found, i.e., twinning dominates the plastic deformation and divides the coarse grains into finer twin platelets at the initial stage, stacking faults are generated and a number of dislocation slip systems are activated leading to the cross slips with increasing strain and strain rate, eventually high-density dislocation networks, dislocation cells and dislocation arrays are formed, which further subdivides the...

pubElsevier B.V
doi10.1016/j.apsusc.2009.06.098
lad01Applied Surface Science