schliessen

Filtern

 

Bibliotheken

Extremal digraphs whose walks with the same initial and terminal vertices have distinct lengths

Let D be a digraph of order n in which any two walks with the same initial vertex and the same terminal vertex have distinct lengths. We prove that D has at most (n+1)2/4 arcs if n is odd and n(n+2)/4 arcs if n is even. The digraphs attaining this maximum size are determined.

Journal Title: Discrete Mathematics 06 August 2012, Vol.312(15), pp.2203-2213
Main Author: Huang, Zejun
Other Authors: Zhan, Xingzhi
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0012-365X ; E-ISSN: 1872-681X ; DOI: 10.1016/j.disc.2012.04.008
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: elsevier_sdoi_10_1016_j_disc_2012_04_008
title: Extremal digraphs whose walks with the same initial and terminal vertices have distinct lengths
format: Article
creator:
  • Huang, Zejun
  • Zhan, Xingzhi
subjects:
  • Digraph
  • Walk
  • Extremal Digraph
  • 0–1 Matrix
  • Digraph
  • Walk
  • Extremal Digraph
  • 0–1 Matrix
  • Mathematics
ispartof: Discrete Mathematics, 06 August 2012, Vol.312(15), pp.2203-2213
description: Let D be a digraph of order n in which any two walks with the same initial vertex and the same terminal vertex have distinct lengths. We prove that D has at most (n+1)2/4 arcs if n is odd and n(n+2)/4 arcs if n is even. The digraphs attaining this maximum size are determined.
language: eng
source:
identifier: ISSN: 0012-365X ; E-ISSN: 1872-681X ; DOI: 10.1016/j.disc.2012.04.008
fulltext: fulltext
issn:
  • 0012-365X
  • 0012365X
  • 1872-681X
  • 1872681X
url: Link


@attributes
ID318111315
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordiddoi_10_1016_j_disc_2012_04_008
sourceidelsevier_s
recordidTN_elsevier_sdoi_10_1016_j_disc_2012_04_008
sourcesystemPC
dbid
0--K
1--M
2.~1
31B1
41RT
51~.
6457
74G.
86I.
97-5
108P~
119JN
12AAEDT
13AAFTH
14AAKOC
15AAOAW
16AAQFI
17AASFE
18ABAOU
19ABVKL
20ABYKQ
21ACDAQ
22ACRLP
23ADALY
24AEKER
25AFKWA
26AFTJW
27AGHFR
28AGUBO
29AGYEJ
30AIGVJ
31AIKHN
32AITUG
33AJBFU
34AJOXV
35AMFUW
36ARUGR
37BLXMC
38EO8
39EO9
40EP2
41EP3
42FDB
43FIRID
44FNPLU
45G-Q
46GBLVA
47IXB
48J1W
49KOM
50MHUIS
51OAUVE
52P-8
53P-9
54PC.
55Q38
56RPZ
57SDF
58SDG
59SDP
60SES
61SPC
62SSW
63SSZ
64T5K
65~G-
galeid290968907
display
typearticle
titleExtremal digraphs whose walks with the same initial and terminal vertices have distinct lengths
creatorHuang, Zejun ; Zhan, Xingzhi
ispartofDiscrete Mathematics, 06 August 2012, Vol.312(15), pp.2203-2213
identifier
subjectDigraph ; Walk ; Extremal Digraph ; 0–1 Matrix ; Digraph ; Walk ; Extremal Digraph ; 0–1 Matrix ; Mathematics
descriptionLet D be a digraph of order n in which any two walks with the same initial vertex and the same terminal vertex have distinct lengths. We prove that D has at most (n+1)2/4 arcs if n is odd and n(n+2)/4 arcs if n is even. The digraphs attaining this maximum size are determined.
languageeng
oafree_for_read
source
version3
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
linktorsrc$$Uhttp://dx.doi.org/10.1016/j.disc.2012.04.008$$EView_full_text_in_ScienceDirect
search
creatorcontrib
0Huang, Zejun
1Zhan, Xingzhi
titleExtremal digraphs whose walks with the same initial and terminal vertices have distinct lengths
description

Let D be a digraph of order n in which any two walks with the same initial vertex and the same terminal vertex have distinct lengths. We prove that D has at most (n+1)2/4 arcs if n is odd and n(n+2)/4 arcs if n is even. The digraphs attaining this maximum size are determined.

subject
0Digraph
1Walk
2Extremal Digraph
30–1 Matrix
4Mathematics
general
0English
1Elsevier B.V
210.1016/j.disc.2012.04.008
3ScienceDirect (Elsevier)
4ScienceDirect Journals (Elsevier)
sourceidelsevier_s
recordidelsevier_sdoi_10_1016_j_disc_2012_04_008
issn
00012-365X
10012365X
21872-681X
31872681X
rsrctypearticle
creationdate2012
addtitleDiscrete Mathematics
searchscope
0elsevier_full
1elsevier4
2elsevier2
scope
0elsevier_full
1elsevier4
2elsevier2
lsr45$$EView_full_text_in_ScienceDirect
tmp01ScienceDirect Journals (Elsevier)
tmp02
0--K
1--M
2.~1
31B1
41RT
51~.
6457
74G.
86I.
97-5
108P~
119JN
12AAEDT
13AAFTH
14AAKOC
15AAOAW
16AAQFI
17AASFE
18ABAOU
19ABVKL
20ABYKQ
21ACDAQ
22ACRLP
23ADALY
24AEKER
25AFKWA
26AFTJW
27AGHFR
28AGUBO
29AGYEJ
30AIGVJ
31AIKHN
32AITUG
33AJBFU
34AJOXV
35AMFUW
36ARUGR
37BLXMC
38EO8
39EO9
40EP2
41EP3
42FDB
43FIRID
44FNPLU
45G-Q
46GBLVA
47IXB
48J1W
49KOM
50MHUIS
51OAUVE
52P-8
53P-9
54PC.
55Q38
56RPZ
57SDF
58SDG
59SDP
60SES
61SPC
62SSW
63SSZ
64T5K
65~G-
startdate20120806
enddate20120806
lsr40Discrete Mathematics, 06 August 2012, Vol.312 (15), pp.2203-2213
doi10.1016/j.disc.2012.04.008
citationpf 2203 pt 2213 vol 312 issue 15
lsr30VSR-Enriched:[galeid]
sort
titleExtremal digraphs whose walks with the same initial and terminal vertices have distinct lengths
authorHuang, Zejun ; Zhan, Xingzhi
creationdate20120806
lso0120120806
facets
frbrgroupid8258816018596402097
frbrtype5
newrecords20190904
languageeng
topic
0Digraph
1Walk
2Extremal Digraph
30–1 Matrix
4Mathematics
collectionScienceDirect (Elsevier)
prefilterarticles
rsrctypearticles
creatorcontrib
0Huang, Zejun
1Zhan, Xingzhi
jtitleDiscrete Mathematics
creationdate2012
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Huang
1Zhan
aufirst
0Zejun
1Xingzhi
auinitZ
auinit1Z
au
0Huang, Zejun
1Zhan, Xingzhi
atitleExtremal digraphs whose walks with the same initial and terminal vertices have distinct lengths
jtitleDiscrete Mathematics
risdate20120806
volume312
issue15
spage2203
epage2213
pages2203-2213
issn0012-365X
eissn1872-681X
formatjournal
genrearticle
ristypeJOUR
abstract

Let D be a digraph of order n in which any two walks with the same initial vertex and the same terminal vertex have distinct lengths. We prove that D has at most (n+1)2/4 arcs if n is odd and n(n+2)/4 arcs if n is even. The digraphs attaining this maximum size are determined.

pubElsevier B.V
doi10.1016/j.disc.2012.04.008
lad01Discrete Mathematics
oafree_for_read
date2012-08-06