schliessen

Filtern

 

Bibliotheken

Chemistry of a polluted cloudy boundary layer

A one-dimensional photochemical model for cloud-topped boundary layers is developed which includes detailed descriptions of gas-phase and aqueous-phase chemistry, and of the radiation field in and below cloud. The model is used to interpret the accumulation of pollutants observed over Bakersfield, C... Full description

Main Author: Jacob, Daniel J
Other Authors: Gottlieb, Elaine W , Prather, Michael J
Format: Electronic Article Electronic Article
Language: English
Subjects:
Quelle: eScholarship
Created: 1989
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: escholarshipqt0n17m2jm
title: Chemistry of a polluted cloudy boundary layer
format: Article
creator:
  • Jacob, Daniel J
  • Gottlieb, Elaine W
  • Prather, Michael J
subjects:
  • Physical Sciences and Mathematics
  • cloudy boundary layer
  • photochemical model
  • pollution
  • stagnation episode
  • stratus cloud
  • sulphate
ispartof:
description: A one-dimensional photochemical model for cloud-topped boundary layers is developed which includes detailed descriptions of gas-phase and aqueous-phase chemistry, and of the radiation field in and below cloud. The model is used to interpret the accumulation of pollutants observed over Bakersfield, California, during a wintertime stagnation episode with low stratus. The main features of the observations are well simulated; in particular, sulfate accumulates progressively over the course of the episode due to sustained aqueous-phase oxidation of SO2 in the stratus cloud. The major source of sulfate is the reaction S(IV) + Fe(III), provided that this reaction proceeds by a non radical mechanism in which Fe(III) is not reduced. A radical mechanism with SO3 − and Fe(II) as immediate products would quench sulfate production because of depletion of Fe(III). The model results suggest that the non radical mechanism is more consistent with observations, although this result follows from the absence of a rapid Fe(II) oxidation pathway in the model. Even with the non-radical mechanism, most of the soluble iron is present as Fe(II) because Fe(III) is rapidly reduced by O2 −. The S(IV) + Fe(III) reaction provides the principal source of H2O2 in the model; photochemical production of H2O2 from HO2 or O2(−I) is slow because HO2 is depleted by high levels of NO x . The aqueous-phase reaction S(IV) + OH initiates a radical-assisted S(IV) oxidation chain but we find that the chain is not propagated due to efficient termination by SO4 − + Cl− followed by Cl + H2O. A major uncertainty attached to that result is that the reactivities of S(IV)-carbonyl adducts with radical oxidants are unknown. The chain could be efficiently propagated, with high sulfate yields, if the S(IV)-carbonyl adducts were involved in chain propagation. A remarkable feature of the observations, which is well reproduced by the model, is the close balance between total atmospheric concentrations of acids and bases. We argue that this balance reflects the control of sulfate production by NH3, which follows from the pH dependence of the S(IV) + Fe(III) reaction. Such a balance should be a general characteristic of polluted environments where aqueous-phase oxidation of SO2 is the main source of acidity. At night, the acidity of the cloud approaches a steady state between NH3 emissions and H2SO4 production by the S(IV) + Fe(III) reaction. A steady state analysis suggests that [H+] at night should be proportiona
language: eng
source: eScholarship
identifier:
fulltext: fulltext_linktorsrc
url: Link


@attributes
ID899751684
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordidqt0n17m2jm
sourceidescholarship
recordidTN_escholarshipqt0n17m2jm
sourceformatDC
sourcesystemOther
display
typearticle
titleChemistry of a polluted cloudy boundary layer
creatorJacob, Daniel J ; Gottlieb, Elaine W ; Prather, Michael J
creationdate1989
subjectPhysical Sciences and Mathematics; cloudy boundary layer; photochemical model; pollution; stagnation episode; stratus cloud; sulphate
descriptionA one-dimensional photochemical model for cloud-topped boundary layers is developed which includes detailed descriptions of gas-phase and aqueous-phase chemistry, and of the radiation field in and below cloud. The model is used to interpret the accumulation of pollutants observed over Bakersfield, California, during a wintertime stagnation episode with low stratus. The main features of the observations are well simulated; in particular, sulfate accumulates progressively over the course of the episode due to sustained aqueous-phase oxidation of SO2 in the stratus cloud. The major source of sulfate is the reaction S(IV) + Fe(III), provided that this reaction proceeds by a non radical mechanism in which Fe(III) is not reduced. A radical mechanism with SO3 − and Fe(II) as immediate products would quench sulfate production because of depletion of Fe(III). The model results suggest that the non radical mechanism is more consistent with observations, although this result follows from the absence of a rapid Fe(II) oxidation pathway in the model. Even with the non-radical mechanism, most of the soluble iron is present as Fe(II) because Fe(III) is rapidly reduced by O2 −. The S(IV) + Fe(III) reaction provides the principal source of H2O2 in the model; photochemical production of H2O2 from HO2 or O2(−I) is slow because HO2 is depleted by high levels of NO x . The aqueous-phase reaction S(IV) + OH initiates a radical-assisted S(IV) oxidation chain but we find that the chain is not propagated due to efficient termination by SO4 − + Cl− followed by Cl + H2O. A major uncertainty attached to that result is that the reactivities of S(IV)-carbonyl adducts with radical oxidants are unknown. The chain could be efficiently propagated, with high sulfate yields, if the S(IV)-carbonyl adducts were involved in chain propagation. A remarkable feature of the observations, which is well reproduced by the model, is the close balance between total atmospheric concentrations of acids and bases. We argue that this balance reflects the control of sulfate production by NH3, which follows from the pH dependence of the S(IV) + Fe(III) reaction. Such a balance should be a general characteristic of polluted environments where aqueous-phase oxidation of SO2 is the main source of acidity. At night, the acidity of the cloud approaches a steady state between NH3 emissions and H2SO4 production by the S(IV) + Fe(III) reaction. A steady state analysis suggests that [H+] at night should be proportional to (ESO 2/ENH 3)1/2 where ESO 2 and ENH 3 are emission rates of SO2 and NH3, respectively. From this analysis it appears that cloud water pH values below 3 are unlikely to occur in the Bakersfield atmosphere during the nighttime hours. Very high acidities could, however, be achieved in the daytime because of photochemical acid production by the gas-phase reactions NO2 + OH and SO2 + OH.
languageeng
relationJacob, Daniel J; Gottlieb, Elaine W; & Prather, Michael J. (1989). Chemistry of a polluted cloudy boundary layer. Journal of Geophysical Research, 94(D10), 12975. doi: 10.1029/JD094iD10p12975. UC Irvine: Department of Earth System Science, UCI. Retrieved from: http://www.escholarship.org/uc/item/0n17m2jm
sourceeScholarship
oafree_for_read
links
openurl$$Topenurl_article
linktorsrc$$Uhttp://www.escholarship.org/uc/item/0n17m2jm$$EView_Full-text_in_eScholarship
openurlfulltext$$Topenurlfull_article
search
creatorcontrib
0Jacob, Daniel J
1Gottlieb, Elaine W
2Prather, Michael J
titleChemistry of a polluted cloudy boundary layer
descriptionA one-dimensional photochemical model for cloud-topped boundary layers is developed which includes detailed descriptions of gas-phase and aqueous-phase chemistry, and of the radiation field in and below cloud. The model is used to interpret the accumulation of pollutants observed over Bakersfield, California, during a wintertime stagnation episode with low stratus. The main features of the observations are well simulated; in particular, sulfate accumulates progressively over the course of the episode due to sustained aqueous-phase oxidation of SO2 in the stratus cloud. The major source of sulfate is the reaction S(IV) + Fe(III), provided that this reaction proceeds by a non radical mechanism in which Fe(III) is not reduced. A radical mechanism with SO3 − and Fe(II) as immediate products would quench sulfate production because of depletion of Fe(III). The model results suggest that the non radical mechanism is more consistent with observations, although this result follows from the absence of a rapid Fe(II) oxidation pathway in the model. Even with the non-radical mechanism, most of the soluble iron is present as Fe(II) because Fe(III) is rapidly reduced by O2 −. The S(IV) + Fe(III) reaction provides the principal source of H2O2 in the model; photochemical production of H2O2 from HO2 or O2(−I) is slow because HO2 is depleted by high levels of NO x . The aqueous-phase reaction S(IV) + OH initiates a radical-assisted S(IV) oxidation chain but we find that the chain is not propagated due to efficient termination by SO4 − + Cl− followed by Cl + H2O. A major uncertainty attached to that result is that the reactivities of S(IV)-carbonyl adducts with radical oxidants are unknown. The chain could be efficiently propagated, with high sulfate yields, if the S(IV)-carbonyl adducts were involved in chain propagation. A remarkable feature of the observations, which is well reproduced by the model, is the close balance between total atmospheric concentrations of acids and bases. We argue that this balance reflects the control of sulfate production by NH3, which follows from the pH dependence of the S(IV) + Fe(III) reaction. Such a balance should be a general characteristic of polluted environments where aqueous-phase oxidation of SO2 is the main source of acidity. At night, the acidity of the cloud approaches a steady state between NH3 emissions and H2SO4 production by the S(IV) + Fe(III) reaction. A steady state analysis suggests that [H+] at night should be proportional to (ESO 2/ENH 3)1/2 where ESO 2 and ENH 3 are emission rates of SO2 and NH3, respectively. From this analysis it appears that cloud water pH values below 3 are unlikely to occur in the Bakersfield atmosphere during the nighttime hours. Very high acidities could, however, be achieved in the daytime because of photochemical acid production by the gas-phase reactions NO2 + OH and SO2 + OH.
subject
0Physical Sciences and Mathematics
1cloudy boundary layer
2photochemical model
3pollution
4stagnation episode
5stratus cloud
6sulphate
generalenglish
sourceidescholarship
recordidescholarshipqt0n17m2jm
rsrctypearticle
creationdate1989
searchscope
0escholarship
1eScholarship
scope
0escholarship
1eScholarship
sort
titleChemistry of a polluted cloudy boundary layer
authorJacob, Daniel J ; Gottlieb, Elaine W ; Prather, Michael J
creationdate19890101
facets
frbrgroupid7115897958885687148
frbrtype6
languageenglish
creationdate1989
topic
0Physical Sciences and Mathematics
1cloudy boundary layer
2photochemical model
3pollution
4stagnation episode
5stratus cloud
6sulphate
collectioneScholarship
prefilterarticles
rsrctypearticles
creatorcontrib
0Jacob, Daniel J
1Gottlieb, Elaine W
2Prather, Michael J
delivery
delcategoryRemote Search Resource
fulltextfulltext_linktorsrc
addata
aulast
0Jacob
1Gottlieb
2Prather
aufirst
0Daniel J
1Elaine W
2Michael J
au
0Jacob, Daniel J
1Gottlieb, Elaine W
2Prather, Michael J
atitleChemistry of a polluted cloudy boundary layer
risdateJOUR
pages12975
formatjournal
genrearticle
ristypeJOUR
abstractA one-dimensional photochemical model for cloud-topped boundary layers is developed which includes detailed descriptions of gas-phase and aqueous-phase chemistry, and of the radiation field in and below cloud. The model is used to interpret the accumulation of pollutants observed over Bakersfield, California, during a wintertime stagnation episode with low stratus. The main features of the observations are well simulated; in particular, sulfate accumulates progressively over the course of the episode due to sustained aqueous-phase oxidation of SO2 in the stratus cloud. The major source of sulfate is the reaction S(IV) + Fe(III), provided that this reaction proceeds by a non radical mechanism in which Fe(III) is not reduced. A radical mechanism with SO3 − and Fe(II) as immediate products would quench sulfate production because of depletion of Fe(III). The model results suggest that the non radical mechanism is more consistent with observations, although this result follows from the absence of a rapid Fe(II) oxidation pathway in the model. Even with the non-radical mechanism, most of the soluble iron is present as Fe(II) because Fe(III) is rapidly reduced by O2 −. The S(IV) + Fe(III) reaction provides the principal source of H2O2 in the model; photochemical production of H2O2 from HO2 or O2(−I) is slow because HO2 is depleted by high levels of NO x . The aqueous-phase reaction S(IV) + OH initiates a radical-assisted S(IV) oxidation chain but we find that the chain is not propagated due to efficient termination by SO4 − + Cl− followed by Cl + H2O. A major uncertainty attached to that result is that the reactivities of S(IV)-carbonyl adducts with radical oxidants are unknown. The chain could be efficiently propagated, with high sulfate yields, if the S(IV)-carbonyl adducts were involved in chain propagation. A remarkable feature of the observations, which is well reproduced by the model, is the close balance between total atmospheric concentrations of acids and bases. We argue that this balance reflects the control of sulfate production by NH3, which follows from the pH dependence of the S(IV) + Fe(III) reaction. Such a balance should be a general characteristic of polluted environments where aqueous-phase oxidation of SO2 is the main source of acidity. At night, the acidity of the cloud approaches a steady state between NH3 emissions and H2SO4 production by the S(IV) + Fe(III) reaction. A steady state analysis suggests that [H+] at night should be proportional to (ESO 2/ENH 3)1/2 where ESO 2 and ENH 3 are emission rates of SO2 and NH3, respectively. From this analysis it appears that cloud water pH values below 3 are unlikely to occur in the Bakersfield atmosphere during the nighttime hours. Very high acidities could, however, be achieved in the daytime because of photochemical acid production by the gas-phase reactions NO2 + OH and SO2 + OH.
copUniversity of California
pubeScholarship
urlhttp://www.escholarship.org/uc/item/0n17m2jm
oafree_for_read
date1989-01-01