schliessen

Filtern

 

Bibliotheken

Bernoulli basis and the product of several Bernoulli polynomials.(Research Article)(Report)

We develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of polynomials of degree less than or equal to n.

Journal Title: International Journal of Mathematics and Mathematical Sciences Sept-Oct, 2012
Main Author: Kim, Dae San
Other Authors: Kim, Taekyun
Format: Electronic Article Electronic Article
Language: English
Subjects:
Quelle: Cengage Learning, Inc.
ID: ISSN: 0161-1712
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: gale_ofa313796539
title: Bernoulli basis and the product of several Bernoulli polynomials.(Research Article)(Report)
format: Article
creator:
  • Kim, Dae San
  • Kim, Taekyun
subjects:
  • Polynomials -- Research
  • Vectors (Mathematics) -- Research
  • Degrees (Algebra) -- Research
ispartof: International Journal of Mathematics and Mathematical Sciences, Sept-Oct, 2012
description: We develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of polynomials of degree less than or equal to n.
language: English
source: Cengage Learning, Inc.
identifier: ISSN: 0161-1712
fulltext: fulltext
issn:
  • 0161-1712
  • 01611712
url: Link


@attributes
ID435494139
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid313796539
sourceidgale_ofa
recordidTN_gale_ofa313796539
sourceformatXML
sourcesystemPC
galeid313796539
display
typearticle
titleBernoulli basis and the product of several Bernoulli polynomials.(Research Article)(Report)
creatorKim, Dae San ; Kim, Taekyun
ispartofInternational Journal of Mathematics and Mathematical Sciences, Sept-Oct, 2012
identifierISSN: 0161-1712
subjectPolynomials -- Research ; Vectors (Mathematics) -- Research ; Degrees (Algebra) -- Research
descriptionWe develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of polynomials of degree less than or equal to n.
languageEnglish
sourceCengage Learning, Inc.
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
search
scope
0gale_onefilea
1OneFile
creatorcontrib
0Kim, Dae San
1Kim
2Kim, Taekyun
titleBernoulli basis and the product of several Bernoulli polynomials.(Research Article)(Report)
descriptionWe develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of polynomials of degree less than or equal to n.
subject
0Polynomials--Research
1Vectors (Mathematics)--Research
2Degrees (Algebra)--Research
3South Korea
49SOUT
general
0English
1Hindawi Publishing Corp.
2Cengage Learning, Inc.
sourceidgale_ofa
recordidgale_ofa313796539
issn
00161-1712
101611712
rsrctypearticle
creationdate2012
recordtypearticle
addtitleInternational Journal of Mathematics and Mathematical Sciences
searchscopeOneFile
sort
titleBernoulli basis and the product of several Bernoulli polynomials.(Research Article)(Report)
authorKim, Dae San ; Kim, Taekyun
creationdate20120901
facets
frbrgroupid-8709442343872166018
frbrtype6
languageeng
creationdate2012
topic
0Polynomials–Research
1Vectors (Mathematics)–Research
2Degrees (Algebra)–Research
collectionOneFile (GALE)
prefilterarticles
rsrctypearticles
creatorcontrib
0Kim, Dae San
1Kim, Taekyun
jtitleInternational Journal of Mathematics and Mathematical Sciences
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
au
0Kim, Dae San
1Kim, Taekyun
atitleBernoulli basis and the product of several Bernoulli polynomials.(Research Article)(Report)
jtitleInternational Journal of Mathematics and Mathematical Sciences
risdate20120901
issn0161-1712
genrearticle
ristypeJOUR
abstractWe develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of polynomials of degree less than or equal to n.
pubHindawi Publishing Corp.
lad01gale_ofa
date2012-09-01