schliessen

Filtern

 

Bibliotheken

Development of monodispersed and functional magnetic polymeric liposomes via simple liposome method

Issue Title: Special Focus on Nanobiosystems We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only abo... Full description

Journal Title: Journal of Nanoparticle Research Jun 2010, Vol.12(5), pp.1723-1732
Main Author: Liang, Xiaofei
Other Authors: Wang, Hanjie , Jiang, Xinguo , Chang, Jin
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 13880764 ; E-ISSN: 1572896X ; DOI: 10.1007/s11051-010-9896-3
Link: http://search.proquest.com/docview/1112213327/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1112213327
title: Development of monodispersed and functional magnetic polymeric liposomes via simple liposome method
format: Article
creator:
  • Liang, Xiaofei
  • Wang, Hanjie
  • Jiang, Xinguo
  • Chang, Jin
subjects:
  • Drug Delivery Systems -- Analysis
  • Drug Delivery Systems -- Methods
  • Indomethacin -- Analysis
  • Indomethacin -- Methods
  • Nanotechnology -- Analysis
  • Nanotechnology -- Methods
  • Thin Films -- Analysis
  • Thin Films -- Methods
  • Pharmacy -- Analysis
  • Pharmacy -- Methods
  • Surface Active Agents -- Analysis
  • Surface Active Agents -- Methods
  • Biomedical Engineering -- Analysis
  • Biomedical Engineering -- Methods
ispartof: Journal of Nanoparticle Research, Jun 2010, Vol.12(5), pp.1723-1732
description: Issue Title: Special Focus on Nanobiosystems We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.[PUBLICATION ]
language: eng
source:
identifier: ISSN: 13880764 ; E-ISSN: 1572896X ; DOI: 10.1007/s11051-010-9896-3
fulltext: fulltext
issn:
  • 13880764
  • 1388-0764
  • 1572896X
  • 1572-896X
url: Link


@attributes
ID1219202219
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1112213327
sourceidproquest
recordidTN_proquest1112213327
sourcesystemPC
pqid1112213327
galeid228128658
display
typearticle
titleDevelopment of monodispersed and functional magnetic polymeric liposomes via simple liposome method
creatorLiang, Xiaofei ; Wang, Hanjie ; Jiang, Xinguo ; Chang, Jin
ispartofJournal of Nanoparticle Research, Jun 2010, Vol.12(5), pp.1723-1732
identifier
descriptionIssue Title: Special Focus on Nanobiosystems We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.[PUBLICATION ]
languageeng
source
subjectDrug Delivery Systems -- Analysis ; Drug Delivery Systems -- Methods ; Indomethacin -- Analysis ; Indomethacin -- Methods ; Nanotechnology -- Analysis ; Nanotechnology -- Methods ; Thin Films -- Analysis ; Thin Films -- Methods ; Pharmacy -- Analysis ; Pharmacy -- Methods ; Surface Active Agents -- Analysis ; Surface Active Agents -- Methods ; Biomedical Engineering -- Analysis ; Biomedical Engineering -- Methods;
version4
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1112213327/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Liang, Xiaofei
1Wang, Hanjie
2Jiang, Xinguo
3Chang, Jin
titleDevelopment of monodispersed and functional magnetic polymeric liposomes via simple liposome method
descriptionIssue Title: Special Focus on Nanobiosystems We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.[PUBLICATION ]
general
0English
1Springer Nature B.V.
210.1007/s11051-010-9896-3
3Health & Medical Collection (Alumni edition)
4ProQuest Pharma Collection
5Health & Medical Collection
6Engineered Materials Abstracts
7ANTE: Abstracts in New Technology & Engineering
8Solid State and Superconductivity Abstracts
9Mechanical & Transportation Engineering Abstracts
10METADEX
11Materials Science Database
12Advanced Technologies & Aerospace Database
13Engineering Database
14Biological Science Database
15Advanced Technologies Database with Aerospace
16Engineering Research Database
17Materials Research Database
18Technology Research Database
19ProQuest Biological Science Collection
20ProQuest Central
21ProQuest Engineering Collection
22ProQuest Environmental Science Collection
23ProQuest Advanced Technologies & Aerospace Collection
24ProQuest Hospital Collection
25ProQuest Materials Science Collection
26ProQuest Natural Science Collection
27ProQuest Technology Collection
28Hospital Premium Collection (Alumni edition)
29ProQuest SciTech Collection
30ProQuest Health & Medical Complete
31Agricultural & Environmental Science Database
32Materials Science & Engineering Database
33Natural Science Collection
34ProQuest Central (new)
35ProQuest Central K-12
36ProQuest Central Korea
37SciTech Premium Collection
38Technology Collection
39Health Research Premium Collection
40Health Research Premium Collection (Alumni edition)
41ProQuest Central Essentials
42ProQuest Central China
43ProQuest One Academic
44Environmental Science Index (ProQuest)
45Biological Science Index (ProQuest)
46Advanced Technologies & Aerospace Index (ProQuest)
47Materials Science Index (ProQuest)
48Engineering Index (ProQuest)
49Environmental Science Collection (ProQuest)
50Materials Science Collection (ProQuest)
51Engineering Collection (ProQuest)
sourceidproquest
recordidproquest1112213327
issn
013880764
11388-0764
21572896X
31572-896X
rsrctypearticle
creationdate2010
addtitleJournal of Nanoparticle Research
searchscope
01006761
11006815
21007067
31007393
41007421
51007443
61007481
71007488
81007526
91007528
101007851
111007852
121007853
131007856
141007945
151008886
161009127
171009386
1810000004
1910000005
2010000006
2110000012
2210000013
2310000014
2410000015
2510000022
2610000038
2710000039
2810000041
2910000043
3010000045
3110000047
3210000049
3310000050
3410000053
3510000118
3610000119
3710000120
3810000155
3910000156
4010000195
4110000198
4210000200
4310000201
4410000203
4510000209
4610000217
4710000233
4810000234
4910000238
5010000250
5110000253
5210000255
5310000256
5410000257
5510000258
5610000260
5710000265
5810000268
5910000270
6010000271
6110000281
6210000300
6310000348
6410000349
6510000350
6610000351
6710000352
6810000353
6910000354
7010000355
7110000356
7210000360
73proquest
scope
01006761
11006815
21007067
31007393
41007421
51007443
61007481
71007488
81007526
91007528
101007851
111007852
121007853
131007856
141007945
151008886
161009127
171009386
1810000004
1910000005
2010000006
2110000012
2210000013
2310000014
2410000015
2510000022
2610000038
2710000039
2810000041
2910000043
3010000045
3110000047
3210000049
3310000050
3410000053
3510000118
3610000119
3710000120
3810000155
3910000156
4010000195
4110000198
4210000200
4310000201
4410000203
4510000209
4610000217
4710000233
4810000234
4910000238
5010000250
5110000253
5210000255
5310000256
5410000257
5510000258
5610000260
5710000265
5810000268
5910000270
6010000271
6110000281
6210000300
6310000348
6410000349
6510000350
6610000351
6710000352
6810000353
6910000354
7010000355
7110000356
7210000360
73proquest
lsr43
01006761true
11006815true
21007067true
31007393false
41007421false
51007443false
61007481false
71007488false
81007526false
91007528false
101007851true
111007852true
121007853true
131007856true
141007945true
151008886true
161009127true
171009386true
1810000004false
1910000005false
2010000006false
2110000012false
2210000013false
2310000014false
2410000015false
2510000022false
2610000038true
2710000039true
2810000041true
2910000043false
3010000045true
3110000047true
3210000049true
3310000050true
3410000053true
3510000118true
3610000119true
3710000120true
3810000155true
3910000156true
4010000195false
4110000198false
4210000200false
4310000201false
4410000203false
4510000209false
4610000217false
4710000233true
4810000234false
4910000238true
5010000250true
5110000253true
5210000255true
5310000256true
5410000257true
5510000258true
5610000260true
5710000265true
5810000268true
5910000270true
6010000271true
6110000281true
6210000300true
6310000348true
6410000349false
6510000350false
6610000351false
6710000352false
6810000353false
6910000354false
7010000355true
7110000356true
7210000360true
startdate20100601
enddate20100601
citationpf 1723 pt 1732 vol 12 issue 5
lsr30VSR-Enriched:[subject, galeid, pqid]
sort
titleDevelopment of monodispersed and functional magnetic polymeric liposomes via simple liposome method
authorLiang, Xiaofei ; Wang, Hanjie ; Jiang, Xinguo ; Chang, Jin
creationdate20100601
lso0120100601
facets
frbrgroupid9172928030417535348
frbrtype5
languageeng
creationdate2010
collection
0Health & Medical Collection (Alumni edition)
1ProQuest Pharma Collection
2Health & Medical Collection
3Engineered Materials Abstracts
4ANTE: Abstracts in New Technology & Engineering
5Solid State and Superconductivity Abstracts
6Mechanical & Transportation Engineering Abstracts
7METADEX
8Materials Science Database
9Advanced Technologies & Aerospace Database
10Engineering Database
11Biological Science Database
12Advanced Technologies Database with Aerospace
13Engineering Research Database
14Materials Research Database
15Technology Research Database
16ProQuest Biological Science Collection
17ProQuest Central
18ProQuest Engineering Collection
19ProQuest Environmental Science Collection
20ProQuest Advanced Technologies & Aerospace Collection
21ProQuest Hospital Collection
22ProQuest Materials Science Collection
23ProQuest Natural Science Collection
24ProQuest Technology Collection
25Hospital Premium Collection (Alumni edition)
26ProQuest SciTech Collection
27ProQuest Health & Medical Complete
28Agricultural & Environmental Science Database
29Materials Science & Engineering Database
30Natural Science Collection
31ProQuest Central (new)
32ProQuest Central K-12
33ProQuest Central Korea
34SciTech Premium Collection
35Technology Collection
36Health Research Premium Collection
37Health Research Premium Collection (Alumni edition)
38ProQuest Central Essentials
39ProQuest Central China
40ProQuest One Academic
41Environmental Science Index (ProQuest)
42Biological Science Index (ProQuest)
43Advanced Technologies & Aerospace Index (ProQuest)
44Materials Science Index (ProQuest)
45Engineering Index (ProQuest)
46Environmental Science Collection (ProQuest)
47Materials Science Collection (ProQuest)
48Engineering Collection (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Liang, Xiaofei
1Wang, Hanjie
2Jiang, Xinguo
3Chang, Jin
jtitleJournal of Nanoparticle Research
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Liang
1Wang
2Jiang
3Chang
aufirst
0Xiaofei
1Hanjie
2Xinguo
3Jin
auinit1
0X.
1H.
2J.
au
0Liang, Xiaofei
1Wang, Hanjie
2Jiang, Xinguo
3Chang, Jin
atitleDevelopment of monodispersed and functional magnetic polymeric liposomes via simple liposome method
jtitleJournal of Nanoparticle Research
risdate20100601
volume12
issue5
spage1723
epage1732
pages1723-1732
issn13880764
eissn1572896X
formatjournal
genrearticle
ristypeJOUR
abstractIssue Title: Special Focus on Nanobiosystems We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.[PUBLICATION ABSTRACT]
copDordrecht
pubSpringer Nature B.V.
doi10.1007/s11051-010-9896-3
urlhttp://search.proquest.com/docview/1112213327/
date2010-06-01