schliessen

Filtern

 

Bibliotheken

Control of substrate access to the active site in methane monooxygenase.

Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains thre... Full description

Journal Title: Nature February 21, 2013, Vol.494(7437), pp.380-384
Main Author: Lee, Seung Jae
Other Authors: Mccormick, Michael S , Lippard, Stephen J , Cho, Uhn-Soo
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: E-ISSN: 1476-4687 ; DOI: 10.1038/nature11880
Link: http://search.proquest.com/docview/1312172047/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1312172047
title: Control of substrate access to the active site in methane monooxygenase.
format: Article
creator:
  • Lee, Seung Jae
  • Mccormick, Michael S
  • Lippard, Stephen J
  • Cho, Uhn-Soo
subjects:
  • Biocatalysis–Metabolism
  • Catalytic Domain–Enzymology
  • Crystallography, X-Ray–Chemistry
  • Iron–Metabolism
  • Methylococcus Capsulatus–Chemistry
  • Mixed Function Oxygenases–Metabolism
  • Models, Molecular–Chemistry
  • Multienzyme Complexes–Metabolism
  • Oxidoreductases–Chemistry
  • Oxygenases–Metabolism
  • Protein Conformation–Chemistry
  • Protein Subunits–Metabolism
  • Structure-Activity Relationship–Metabolism
  • Substrate Specificity–Metabolism
  • Multienzyme Complexes
  • Protein Subunits
  • Iron
  • Mixed Function Oxygenases
  • Oxidoreductases
  • Oxygenases
  • Methane Monooxygenase
ispartof: Nature, February 21, 2013, Vol.494(7437), pp.380-384
description: Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH-MMOB (hereafter termed H-B) complex. Here we remedy this deficiency by providing a crystal structure of H-B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α(2)β(2) interface of α(2)β(2)γ(2) MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.
language: eng
source:
identifier: E-ISSN: 1476-4687 ; DOI: 10.1038/nature11880
fulltext: fulltext
issn:
  • 14764687
  • 1476-4687
url: Link


@attributes
ID790711155
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1312172047
sourceidproquest
recordidTN_proquest1312172047
sourcesystemPC
pqid1312172047
galeid320072139
display
typearticle
titleControl of substrate access to the active site in methane monooxygenase.
creatorLee, Seung Jae ; Mccormick, Michael S ; Lippard, Stephen J ; Cho, Uhn-Soo
contributorLee, Seung Jae (correspondence author) ; Lee, Seung Jae (record owner)
ispartofNature, February 21, 2013, Vol.494(7437), pp.380-384
identifierE-ISSN: 1476-4687 ; DOI: 10.1038/nature11880
subjectBiocatalysis–Metabolism ; Catalytic Domain–Enzymology ; Crystallography, X-Ray–Chemistry ; Iron–Metabolism ; Methylococcus Capsulatus–Chemistry ; Mixed Function Oxygenases–Metabolism ; Models, Molecular–Chemistry ; Multienzyme Complexes–Metabolism ; Oxidoreductases–Chemistry ; Oxygenases–Metabolism ; Protein Conformation–Chemistry ; Protein Subunits–Metabolism ; Structure-Activity Relationship–Metabolism ; Substrate Specificity–Metabolism ; Multienzyme Complexes ; Protein Subunits ; Iron ; Mixed Function Oxygenases ; Oxidoreductases ; Oxygenases ; Methane Monooxygenase
languageeng
source
descriptionMethanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH-MMOB (hereafter termed H-B) complex. Here we remedy this deficiency by providing a crystal structure of H-B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α(2)β(2) interface of α(2)β(2)γ(2) MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.
version8
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1312172047/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Lee, Seung Jae
1Mccormick, Michael S
2Lippard, Stephen J
3Cho, Uhn-Soo
titleControl of substrate access to the active site in methane monooxygenase.
subject
0Biocatalysis–Metabolism
1Catalytic Domain–Enzymology
2Crystallography, X-Ray–Chemistry
3Iron–Metabolism
4Methylococcus Capsulatus–Chemistry
5Mixed Function Oxygenases–Metabolism
6Models, Molecular–Chemistry
7Multienzyme Complexes–Metabolism
8Oxidoreductases–Chemistry
9Oxygenases–Metabolism ;...
104GAM
11PDB
general
0English
110.1038/nature11880
2MEDLINE (ProQuest)
3ProQuest Biological Science Collection
4ProQuest Natural Science Collection
5ProQuest SciTech Collection
6Biological Science Database
7Natural Science Collection
8SciTech Premium Collection
9Health Research Premium Collection
10Health Research Premium Collection (Alumni edition)
11Biological Science Index (ProQuest)
sourceidproquest
recordidproquest1312172047
issn
014764687
11476-4687
rsrctypearticle
creationdate2013
addtitleNature
searchscope
01007527
11007944
21009130
310000004
410000038
510000050
610000120
710000159
810000238
910000253
1010000260
1110000270
1210000271
1310000302
1410000350
15proquest
scope
01007527
11007944
21009130
310000004
410000038
510000050
610000120
710000159
810000238
910000253
1010000260
1110000270
1210000271
1310000302
1410000350
15proquest
lsr43
01007527false
11007944false
21009130false
310000004false
410000038false
510000050false
610000120false
710000159false
810000238false
910000253false
1010000260false
1110000270false
1210000271false
1310000302false
1410000350false
contributorLee, Seung Jae
startdate20130221
enddate20130221
citationpf 380 pt 384 vol 494 issue 7437
lsr30VSR-Enriched:[description, pqid, galeid, issn]
sort
titleControl of substrate access to the active site in methane monooxygenase.
authorLee, Seung Jae ; Mccormick, Michael S ; Lippard, Stephen J ; Cho, Uhn-Soo
creationdate20130221
lso0120130221
facets
frbrgroupid9104117356455945908
frbrtype5
newrecords20181218
languageeng
creationdate2013
topic
0Biocatalysis–Metabolism
1Catalytic Domain–Enzymology
2Crystallography, X-Ray–Chemistry
3Iron–Metabolism
4Methylococcus Capsulatus–Chemistry
5Mixed Function Oxygenases–Metabolism
6Models, Molecular–Chemistry
7Multienzyme Complexes–Metabolism
8Oxidoreductases–Chemistry
9Oxygenases–Metabolism ;...
collection
0MEDLINE (ProQuest)
1ProQuest Biological Science Collection
2ProQuest Natural Science Collection
3ProQuest SciTech Collection
4Biological Science Database
5Natural Science Collection
6SciTech Premium Collection
7Health Research Premium Collection
8Health Research Premium Collection (Alumni edition)
9Biological Science Index (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Lee, Seung Jae
1Mccormick, Michael S
2Lippard, Stephen J
3Cho, Uhn-Soo
jtitleNature
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Lee
1McCormick
2Lippard
3Cho
aufirst
0Seung Jae
1Michael S
2Stephen J
3Uhn-Soo
au
0Lee, Seung Jae
1Mccormick, Michael S
2Lippard, Stephen J
3Cho, Uhn-Soo
addauLee, Seung Jae
atitleControl of substrate access to the active site in methane monooxygenase.
jtitleNature
risdate20130221
volume494
issue7437
spage380
epage384
pages380-384
eissn1476-4687
formatjournal
genrearticle
ristypeJOUR
doi10.1038/nature11880
urlhttp://search.proquest.com/docview/1312172047/
issn00280836
date2013-02-21