schliessen

Filtern

 

Bibliotheken

Quantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization.

Lipid vesicle encapsulation is an efficient approach to transfer quantum dots (QDs) into aqueous solutions, which is important for renewable energy applications and biological imaging. However, little is known about the molecular organization at the interface between a QD and lipid membrane. To addr... Full description

Journal Title: Journal of the American Chemical Society February 5, 2014, Vol.136(5), pp.1992-1999
Main Author: Zheng, Weiwei
Other Authors: Liu, Yang , West, Ana , Schuler, Erin E , Yehl, Kevin , Dyer, R Brian , Kindt, James T , Salaita, Khalid
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: E-ISSN: 1520-5126 ; DOI: 1520-5126 ; DOI: 10.1021/ja411339f
Link: http://search.proquest.com/docview/1499120474/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1499120474
title: Quantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization.
format: Article
creator:
  • Zheng, Weiwei
  • Liu, Yang
  • West, Ana
  • Schuler, Erin E
  • Yehl, Kevin
  • Dyer, R Brian
  • Kindt, James T
  • Salaita, Khalid
subjects:
  • Cadmium Compounds–Chemistry
  • DNA, Single-Stranded–Chemistry
  • Gold–Chemistry
  • Ligands–Chemistry
  • Luminescence–Chemistry
  • Membranes, Artificial–Chemistry
  • Microscopy, Electron, Transmission–Chemistry
  • Molecular Dynamics Simulation–Chemistry
  • Oxidation-Reduction–Chemistry
  • Phase Transition–Chemistry
  • Phospholipids–Chemistry
  • Photochemical Processes–Chemistry
  • Quantum Dots–Chemistry
  • Selenium Compounds–Chemistry
  • Surface Properties–Chemistry
  • Cadmium Compounds
  • DNA, Single-Stranded
  • Ligands
  • Membranes, Artificial
  • Phospholipids
  • Selenium Compounds
  • Gold
  • Cadmium Selenide
ispartof: Journal of the American Chemical Society, February 5, 2014, Vol.136(5), pp.1992-1999
description: Lipid vesicle encapsulation is an efficient approach to transfer quantum dots (QDs) into aqueous solutions, which is important for renewable energy applications and biological imaging. However, little is known about the molecular organization at the interface between a QD and lipid membrane. To address this issue, we investigated the properties of 3.0 nm CdSe QDs encapsulated within phospholipid membranes displaying a range of phase transition temperatures ( T m ). Theoretical and experimental results indicate that the QD locally alters membrane structure, and in turn, the physical state (phase) of the membrane controls the optical and chemical properties of the QDs. Using photoluminescence, ICP-MS, optical microscopy, and ligand exchange studies, we found that the T m of the membrane controls optical and chemical properties of lipid vesicle-embedded QDs. Importantly, QDs encapsulated within gel-phase membranes were ultrastable, providing the most photostable non-core/shell QDs in aqueous solution reported to date. Atomistic molecular dynamics simulations support these observations and indicate that membranes are locally disordered displaying greater disordered organization near the particle–solution interface. Using this asymmetry in membrane organization near the particle, we identify a new approach for site-selective modification of QDs by specifically functionalizing the QD surface facing the outer lipid leaflet to generate gold nanoparticle–QD assemblies programmed by Watson–Crick base-pairing.
language: eng
source:
identifier: E-ISSN: 1520-5126 ; DOI: 1520-5126 ; DOI: 10.1021/ja411339f
fulltext: no_fulltext
issn:
  • 15205126
  • 1520-5126
url: Link


@attributes
ID1102874372
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1499120474
sourceidproquest
recordidTN_proquest1499120474
sourcesystemOther
pqid1499120474
galeid361486977
display
typearticle
titleQuantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization.
creatorZheng, Weiwei ; Liu, Yang ; West, Ana ; Schuler, Erin E ; Yehl, Kevin ; Dyer, R Brian ; Kindt, James T ; Salaita, Khalid
contributorZheng, Weiwei (correspondence author) ; Zheng, Weiwei (record owner)
ispartofJournal of the American Chemical Society, February 5, 2014, Vol.136(5), pp.1992-1999
identifier
subjectCadmium Compounds–Chemistry ; DNA, Single-Stranded–Chemistry ; Gold–Chemistry ; Ligands–Chemistry ; Luminescence–Chemistry ; Membranes, Artificial–Chemistry ; Microscopy, Electron, Transmission–Chemistry ; Molecular Dynamics Simulation–Chemistry ; Oxidation-Reduction–Chemistry ; Phase Transition–Chemistry ; Phospholipids–Chemistry ; Photochemical Processes–Chemistry ; Quantum Dots–Chemistry ; Selenium Compounds–Chemistry ; Surface Properties–Chemistry ; Cadmium Compounds ; DNA, Single-Stranded ; Ligands ; Membranes, Artificial ; Phospholipids ; Selenium Compounds ; Gold ; Cadmium Selenide
languageeng
source
descriptionLipid vesicle encapsulation is an efficient approach to transfer quantum dots (QDs) into aqueous solutions, which is important for renewable energy applications and biological imaging. However, little is known about the molecular organization at the interface between a QD and lipid membrane. To address this issue, we investigated the properties of 3.0 nm CdSe QDs encapsulated within phospholipid membranes displaying a range of phase transition temperatures ( T m ). Theoretical and experimental results indicate that the QD locally alters membrane structure, and in turn, the physical state (phase) of the membrane controls the optical and chemical properties of the QDs. Using photoluminescence, ICP-MS, optical microscopy, and ligand exchange studies, we found that the T m of the membrane controls optical and chemical properties of lipid vesicle-embedded QDs. Importantly, QDs encapsulated within gel-phase membranes were ultrastable, providing the most photostable non-core/shell QDs in aqueous solution reported to date. Atomistic molecular dynamics simulations support these observations and indicate that membranes are locally disordered displaying greater disordered organization near the particle–solution interface. Using this asymmetry in membrane organization near the particle, we identify a new approach for site-selective modification of QDs by specifically functionalizing the QD surface facing the outer lipid leaflet to generate gold nanoparticle–QD assemblies programmed by Watson–Crick base-pairing.
version6
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1499120474/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Zheng, Weiwei
1Liu, Yang
2West, Ana
3Schuler, Erin E
4Yehl, Kevin
5Dyer, R Brian
6Kindt, James T
7Salaita, Khalid
titleQuantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization.
subject
0Cadmium Compounds–Chemistry
1DNA, Single-Stranded–Chemistry
2Gold–Chemistry
3Ligands–Chemistry
4Luminescence–Chemistry
5Membranes, Artificial–Chemistry
6Microscopy, Electron, Transmission–Chemistry
7Molecular Dynamics Simulation–Chemistry
8Oxidation-Reduction–Chemistry
9Phase Transition–Chemistry
10Phospholipids–Chemistry
11Photochemical Processes–Chemistry
12Quantum Dots–Chemistry
13Selenium Compounds–Chemistry
14Surface Properties–Chemistry
15Cadmium Compounds
16DNA, Single-Stranded
17Ligands
18Membranes, Artificial
19Phospholipids
20Selenium Compounds
21Gold
22Cadmium Selenide
general
0English
11520-5126
210.1021/ja411339f
3MEDLINE (ProQuest)
4ProQuest Biological Science Collection
5ProQuest Natural Science Collection
6ProQuest SciTech Collection
7Biological Science Database
8Natural Science Collection
9SciTech Premium Collection
10Health Research Premium Collection
11Health Research Premium Collection (Alumni edition)
12Biological Science Index (ProQuest)
sourceidproquest
recordidproquest1499120474
issn
015205126
11520-5126
rsrctypearticle
creationdate2014
addtitleJournal of the American Chemical Society
searchscope
01007527
11007944
210000004
310000038
410000050
510000120
610000159
710000238
810000253
910000260
1010000270
1110000271
1210000302
1310000350
14proquest
scope
01007527
11007944
210000004
310000038
410000050
510000120
610000159
710000238
810000253
910000260
1010000270
1110000271
1210000302
1310000350
14proquest
lsr43
01007527false
11007944false
210000004false
310000038false
410000050false
510000120false
610000159false
710000238false
810000253false
910000260false
1010000270false
1110000271false
1210000302false
1310000350false
contributorZheng, Weiwei
startdate20140205
enddate20140205
citationpf 1992 pt 1999 vol 136 issue 5
lsr30VSR-Enriched:[pqid, description, galeid]
sort
titleQuantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization.
authorZheng, Weiwei ; Liu, Yang ; West, Ana ; Schuler, Erin E ; Yehl, Kevin ; Dyer, R Brian ; Kindt, James T ; Salaita, Khalid
creationdate20140205
lso0120140205
facets
frbrgroupid6070825436111507668
frbrtype5
newrecords20181218
languageeng
creationdate2014
topic
0Cadmium Compounds–Chemistry
1DNA, Single-Stranded–Chemistry
2Gold–Chemistry
3Ligands–Chemistry
4Luminescence–Chemistry
5Membranes, Artificial–Chemistry
6Microscopy, Electron, Transmission–Chemistry
7Molecular Dynamics Simulation–Chemistry
8Oxidation-Reduction–Chemistry
9Phase Transition–Chemistry
10Phospholipids–Chemistry
11Photochemical Processes–Chemistry
12Quantum Dots–Chemistry
13Selenium Compounds–Chemistry
14Surface Properties–Chemistry
15Cadmium Compounds
16DNA, Single-Stranded
17Ligands
18Membranes, Artificial
19Phospholipids
20Selenium Compounds
21Gold
22Cadmium Selenide
collection
0MEDLINE (ProQuest)
1ProQuest Biological Science Collection
2ProQuest Natural Science Collection
3ProQuest SciTech Collection
4Biological Science Database
5Natural Science Collection
6SciTech Premium Collection
7Health Research Premium Collection
8Health Research Premium Collection (Alumni edition)
9Biological Science Index (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Zheng, Weiwei
1Liu, Yang
2West, Ana
3Schuler, Erin E
4Yehl, Kevin
5Dyer, R Brian
6Kindt, James T
7Salaita, Khalid
jtitleJournal of the American Chemical Society
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
aulast
0Zheng
1Liu
2West
3Schuler
4Yehl
5Dyer
6Kindt
7Salaita
aufirst
0Weiwei
1Yang
2Ana
3Erin E
4Kevin
5R Brian
6James T
7Khalid
au
0Zheng, Weiwei
1Liu, Yang
2West, Ana
3Schuler, Erin E
4Yehl, Kevin
5Dyer, R Brian
6Kindt, James T
7Salaita, Khalid
addauZheng, Weiwei
atitleQuantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization.
jtitleJournal of the American Chemical Society
risdate20140205
volume136
issue5
spage1992
epage1999
pages1992-1999
eissn1520-5126
formatjournal
genrearticle
ristypeJOUR
doi10.1021/ja411339f
urlhttp://search.proquest.com/docview/1499120474/
date2014-02-05