schliessen

Filtern

 

Bibliotheken

Enhanced oxidation of nanoparticles through strain-mediated ionic transport

Geometry and confinement effects at the nanoscale can result in substantial modifications to a material's properties with significant consequences in terms of chemical reactivity, biocompatibility and toxicity. Although benefiting applications across a diverse array of environmental and technologica... Full description

Journal Title: Nature Materials Jan 2014, Vol.13(1), pp.26-30
Main Author: Pratt, Andrew
Other Authors: Lari, Leonardo , Hovorka, Ondrej , Shah, Amish , Woffinden, Charles , Tear, Steve , Binns, Chris , Kröger, Roland
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 14761122 ; DOI: 10.1038/nmat3785
Link: http://search.proquest.com/docview/1557623159/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1557623159
title: Enhanced oxidation of nanoparticles through strain-mediated ionic transport
format: Article
creator:
  • Pratt, Andrew
  • Lari, Leonardo
  • Hovorka, Ondrej
  • Shah, Amish
  • Woffinden, Charles
  • Tear, Steve
  • Binns, Chris
  • Kröger, Roland
subjects:
  • Ferric Compounds–Chemistry
  • Ion Transport–Chemistry
  • Iron–Chemistry
  • Models, Molecular–Chemistry
  • Molecular Conformation–Chemistry
  • Nanoparticles–Chemistry
  • Oxidation-Reduction–Chemistry
  • Nanoparticles
  • Oxidation
  • Biocompatibility
  • Metal Oxides
  • Nanostructured Materials
  • Ferric Compounds
  • Ferric Oxide
  • Iron
ispartof: Nature Materials, Jan 2014, Vol.13(1), pp.26-30
description: Geometry and confinement effects at the nanoscale can result in substantial modifications to a material's properties with significant consequences in terms of chemical reactivity, biocompatibility and toxicity. Although benefiting applications across a diverse array of environmental and technological settings, the long-term effects of these changes, for example in the reaction of metallic nanoparticles under atmospheric conditions, are not well understood. Here, we use the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidation of cuboid Fe nanoparticles. Performing strain analysis at the atomic level, we reveal that strain gradients induced in the confined oxide shell by the nanoparticle geometry enhance the transport of diffusing species, ultimately driving oxide domain formation and the shape evolution of the particle. We conjecture that such a strain-gradient-enhanced mass transport mechanism may prove essential for understanding the reaction of nanoparticles with gases in general, and for providing deeper insight into ionic conductivity in strained nanostructures.
language: eng
source:
identifier: ISSN: 14761122 ; DOI: 10.1038/nmat3785
fulltext: fulltext
issn:
  • 14761122
  • 1476-1122
url: Link


@attributes
ID1816739470
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1557623159
sourceidproquest
recordidTN_proquest1557623159
sourcesystemOther
pqid1557623159
display
typearticle
titleEnhanced oxidation of nanoparticles through strain-mediated ionic transport
creatorPratt, Andrew ; Lari, Leonardo ; Hovorka, Ondrej ; Shah, Amish ; Woffinden, Charles ; Tear, Steve ; Binns, Chris ; Kröger, Roland
ispartofNature Materials, Jan 2014, Vol.13(1), pp.26-30
identifierISSN: 14761122 ; DOI: 10.1038/nmat3785
subjectFerric Compounds–Chemistry ; Ion Transport–Chemistry ; Iron–Chemistry ; Models, Molecular–Chemistry ; Molecular Conformation–Chemistry ; Nanoparticles–Chemistry ; Oxidation-Reduction–Chemistry ; Nanoparticles ; Oxidation ; Biocompatibility ; Metal Oxides ; Nanostructured Materials ; Ferric Compounds ; Ferric Oxide ; Iron
descriptionGeometry and confinement effects at the nanoscale can result in substantial modifications to a material's properties with significant consequences in terms of chemical reactivity, biocompatibility and toxicity. Although benefiting applications across a diverse array of environmental and technological settings, the long-term effects of these changes, for example in the reaction of metallic nanoparticles under atmospheric conditions, are not well understood. Here, we use the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidation of cuboid Fe nanoparticles. Performing strain analysis at the atomic level, we reveal that strain gradients induced in the confined oxide shell by the nanoparticle geometry enhance the transport of diffusing species, ultimately driving oxide domain formation and the shape evolution of the particle. We conjecture that such a strain-gradient-enhanced mass transport mechanism may prove essential for understanding the reaction of nanoparticles with gases in general, and for providing deeper insight into ionic conductivity in strained nanostructures.
languageeng
source
version6
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1557623159/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Pratt, Andrew
1Lari, Leonardo
2Hovorka, Ondrej
3Shah, Amish
4Woffinden, Charles
5Tear, Steve
6Binns, Chris
7Kröger, Roland
titleEnhanced oxidation of nanoparticles through strain-mediated ionic transport
descriptionGeometry and confinement effects at the nanoscale can result in substantial modifications to a material's properties with significant consequences in terms of chemical reactivity, biocompatibility and toxicity. Although benefiting applications across a diverse array of environmental and technological settings, the long-term effects of these changes, for example in the reaction of metallic nanoparticles under atmospheric conditions, are not well understood. Here, we use the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidation of cuboid Fe nanoparticles. Performing strain analysis at the atomic level, we reveal that strain gradients induced in the confined oxide shell by the nanoparticle geometry enhance the transport of diffusing species, ultimately driving oxide domain formation and the shape evolution of the particle. We conjecture that such a strain-gradient-enhanced mass transport mechanism may prove essential for understanding the reaction of nanoparticles with gases in general, and for providing deeper insight into ionic conductivity in strained nanostructures.
subject
0Ferric Compounds–Chemistry
1Ion Transport–Chemistry
2Iron–Chemistry
3Models, Molecular–Chemistry
4Molecular Conformation–Chemistry
5Nanoparticles–Chemistry
6Oxidation-Reduction–Chemistry
7Nanoparticles
8Oxidation
9Biocompatibility
10Metal Oxides
11Nanostructured Materials
12Ferric Compounds
13Ferric Oxide
14Iron
general
0English
1Nature Publishing Group
210.1038/nmat3785
3Medical Database
4ProQuest Science Journals
5Health & Medical Collection (Alumni edition)
6Medical Database (Alumni edition)
7Science Database (Alumni edition)
8ProQuest Pharma Collection
9Health & Medical Collection
10Engineered Materials Abstracts
11METADEX
12Materials Science Database
13Engineering Database
14Materials Research Database
15Technology Research Database
16ProQuest Central
17ProQuest Engineering Collection
18ProQuest Hospital Collection
19ProQuest Materials Science Collection
20Polymer Science Collection
21ProQuest Technology Collection
22Hospital Premium Collection (Alumni edition)
23ProQuest SciTech Collection
24ProQuest Health & Medical Complete
25ProQuest Medical Library
26Materials Science & Engineering Database
27ProQuest Central (new)
28ProQuest Central K-12
29ProQuest Central Korea
30SciTech Premium Collection
31Technology Collection
32Health Research Premium Collection
33Health Research Premium Collection (Alumni edition)
34ProQuest Central Essentials
35ProQuest Central China
sourceidproquest
recordidproquest1557623159
issn
014761122
11476-1122
rsrctypearticle
creationdate2014
addtitleNature Materials
searchscope
01000273
11000283
21006761
31006762
41006765
51006815
61007067
71007393
81007528
91007851
101007853
111007945
121008044
131009127
141009386
1510000014
1610000015
1710000022
1810000039
1910000041
2010000047
2110000049
2210000052
2310000053
2410000118
2510000119
2610000120
2710000155
2810000156
2910000157
3010000158
3110000164
3210000201
3310000203
3410000209
3510000250
3610000255
3710000256
3810000257
3910000258
4010000260
4110000265
4210000268
4310000270
4410000271
4510000281
4610000300
47proquest
scope
01000273
11000283
21006761
31006762
41006765
51006815
61007067
71007393
81007528
91007851
101007853
111007945
121008044
131009127
141009386
1510000014
1610000015
1710000022
1810000039
1910000041
2010000047
2110000049
2210000052
2310000053
2410000118
2510000119
2610000120
2710000155
2810000156
2910000157
3010000158
3110000164
3210000201
3310000203
3410000209
3510000250
3610000255
3710000256
3810000257
3910000258
4010000260
4110000265
4210000268
4310000270
4410000271
4510000281
4610000300
47proquest
lsr43
01000273true
11000283true
21006761true
31006762true
41006765true
51006815true
61007067true
71007393false
81007528false
91007851true
101007853true
111007945true
121008044true
131009127true
141009386true
1510000014false
1610000015false
1710000022false
1810000039true
1910000041true
2010000047true
2110000049true
2210000052true
2310000053true
2410000118true
2510000119true
2610000120true
2710000155true
2810000156true
2910000157true
3010000158true
3110000164true
3210000201false
3310000203false
3410000209false
3510000250true
3610000255true
3710000256true
3810000257true
3910000258true
4010000260true
4110000265true
4210000268true
4310000270true
4410000271true
4510000281true
4610000300true
startdate20140101
enddate20140101
citationpf 26 pt 30 vol 13 issue 1
lsr30VSR-Enriched:[eissn, pqid]
sort
titleEnhanced oxidation of nanoparticles through strain-mediated ionic transport
authorPratt, Andrew ; Lari, Leonardo ; Hovorka, Ondrej ; Shah, Amish ; Woffinden, Charles ; Tear, Steve ; Binns, Chris ; Kröger, Roland
creationdate20140101
lso0120140101
facets
frbrgroupid4116014195335427181
frbrtype5
languageeng
creationdate2014
topic
0Ferric Compounds–Chemistry
1Ion Transport–Chemistry
2Iron–Chemistry
3Models, Molecular–Chemistry
4Molecular Conformation–Chemistry
5Nanoparticles–Chemistry
6Oxidation-Reduction–Chemistry
7Nanoparticles
8Oxidation
9Biocompatibility
10Metal Oxides
11Nanostructured Materials
12Ferric Compounds
13Ferric Oxide
14Iron
collection
0Medical Database
1ProQuest Science Journals
2Health & Medical Collection (Alumni edition)
3Medical Database (Alumni edition)
4Science Database (Alumni edition)
5ProQuest Pharma Collection
6Health & Medical Collection
7Engineered Materials Abstracts
8METADEX
9Materials Science Database
10Engineering Database
11Materials Research Database
12Technology Research Database
13ProQuest Central
14ProQuest Engineering Collection
15ProQuest Hospital Collection
16ProQuest Materials Science Collection
17Polymer Science Collection
18ProQuest Technology Collection
19Hospital Premium Collection (Alumni edition)
20ProQuest SciTech Collection
21ProQuest Health & Medical Complete
22ProQuest Medical Library
23Materials Science & Engineering Database
24ProQuest Central (new)
25ProQuest Central K-12
26ProQuest Central Korea
27SciTech Premium Collection
28Technology Collection
29Health Research Premium Collection
30Health Research Premium Collection (Alumni edition)
31ProQuest Central Essentials
32ProQuest Central China
prefilterarticles
rsrctypearticles
creatorcontrib
0Pratt, Andrew
1Lari, Leonardo
2Hovorka, Ondrej
3Shah, Amish
4Woffinden, Charles
5Tear, Steve
6Binns, Chris
7Kröger, Roland
jtitleNature Materials
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Pratt
1Lari
2Hovorka
3Shah
4Woffinden
5Tear
6Binns
7Kröger
aufirst
0Andrew
1Leonardo
2Ondrej
3Amish
4Charles
5Steve
6Chris
7Roland
auinit1
0A.
1L.
2O.
3C.
4S.
5R.
au
0Pratt, Andrew
1Lari, Leonardo
2Hovorka, Ondrej
3Shah, Amish
4Woffinden, Charles
5Tear, Steve
6Binns, Chris
7Kröger, Roland
atitleEnhanced oxidation of nanoparticles through strain-mediated ionic transport
jtitleNature Materials
risdate20140101
volume13
issue1
spage26
epage30
pages26-30
issn14761122
formatjournal
genrearticle
ristypeJOUR
abstractGeometry and confinement effects at the nanoscale can result in substantial modifications to a material's properties with significant consequences in terms of chemical reactivity, biocompatibility and toxicity. Although benefiting applications across a diverse array of environmental and technological settings, the long-term effects of these changes, for example in the reaction of metallic nanoparticles under atmospheric conditions, are not well understood. Here, we use the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidation of cuboid Fe nanoparticles. Performing strain analysis at the atomic level, we reveal that strain gradients induced in the confined oxide shell by the nanoparticle geometry enhance the transport of diffusing species, ultimately driving oxide domain formation and the shape evolution of the particle. We conjecture that such a strain-gradient-enhanced mass transport mechanism may prove essential for understanding the reaction of nanoparticles with gases in general, and for providing deeper insight into ionic conductivity in strained nanostructures.
copLondon
pubNature Publishing Group
doi10.1038/nmat3785
urlhttp://search.proquest.com/docview/1557623159/
eissn14764660
date2014-01-01