schliessen

Filtern

 

Bibliotheken

Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.

Highly conductive copper nanowires (CuNWs) are essential for efficient data transfer and heat conduction in wide ranging applications like high-performance semiconductor chips and transparent conductors. However, size scaling of CuNWs causes severe reduction in electrical and thermal conductivity du... Full description

Journal Title: Nano letters March 11, 2015, Vol.15(3), pp.2024-2030
Main Author: Mehta, Ruchit
Other Authors: Chugh, Sunny , Chen, Zhihong
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: E-ISSN: 1530-6992 ; DOI: 1530-6992 ; DOI: 10.1021/nl504889t
Link: http://search.proquest.com/docview/1662635595/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1662635595
title: Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.
format: Article
creator:
  • Mehta, Ruchit
  • Chugh, Sunny
  • Chen, Zhihong
subjects:
  • Graphene
  • Copper Nanowires
  • Electrical Conductivity
  • Graphene−Copper Hybrids
  • Low-Temperature Graphene Deposition
  • Plasma Cvd
  • Thermal Conductivity
ispartof: Nano letters, March 11, 2015, Vol.15(3), pp.2024-2030
description: Highly conductive copper nanowires (CuNWs) are essential for efficient data transfer and heat conduction in wide ranging applications like high-performance semiconductor chips and transparent conductors. However, size scaling of CuNWs causes severe reduction in electrical and thermal conductivity due to substantial inelastic surface scattering of electrons. Here we report a novel scalable technique for low-temperature deposition of graphene around CuNWs and observe strong enhancement of electrical and thermal conductivity for graphene-encapsulated CuNWs compared to uncoated CuNWs. Fitting the experimental data with the theoretical model for conductivity of CuNWs reveals significant reduction in surface scattering of electrons at the oxide-free CuNW surfaces, translating into 15% faster data transfer and 27% lower peak temperature compared to the same CuNW without the graphene coating. Our results provide compelling evidence for improved speed and thermal management by adapting the Cu-graphene hybrid technology in future ultrascaled silicon chips and air-stable flexible electronic applications. Keywords: Graphene; copper nanowires; electrical conductivity; thermal conductivity; graphene-copper hybrids; low-temperature graphene deposition; plasma CVD
language: eng
source:
identifier: E-ISSN: 1530-6992 ; DOI: 1530-6992 ; DOI: 10.1021/nl504889t
fulltext: no_fulltext
issn:
  • 15306992
  • 1530-6992
url: Link


@attributes
ID378550358
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1662635595
sourceidproquest
recordidTN_proquest1662635595
sourcesystemOther
pqid1662635595
display
typearticle
titleEnhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.
creatorMehta, Ruchit ; Chugh, Sunny ; Chen, Zhihong
contributorMehta, Ruchit (correspondence author) ; Mehta, Ruchit (record owner)
ispartofNano letters, March 11, 2015, Vol.15(3), pp.2024-2030
identifier
subjectGraphene ; Copper Nanowires ; Electrical Conductivity ; Graphene−Copper Hybrids ; Low-Temperature Graphene Deposition ; Plasma Cvd ; Thermal Conductivity
languageeng
source
descriptionHighly conductive copper nanowires (CuNWs) are essential for efficient data transfer and heat conduction in wide ranging applications like high-performance semiconductor chips and transparent conductors. However, size scaling of CuNWs causes severe reduction in electrical and thermal conductivity due to substantial inelastic surface scattering of electrons. Here we report a novel scalable technique for low-temperature deposition of graphene around CuNWs and observe strong enhancement of electrical and thermal conductivity for graphene-encapsulated CuNWs compared to uncoated CuNWs. Fitting the experimental data with the theoretical model for conductivity of CuNWs reveals significant reduction in surface scattering of electrons at the oxide-free CuNW surfaces, translating into 15% faster data transfer and 27% lower peak temperature compared to the same CuNW without the graphene coating. Our results provide compelling evidence for improved speed and thermal management by adapting the Cu-graphene hybrid technology in future ultrascaled silicon chips and air-stable flexible electronic applications. Keywords: Graphene; copper nanowires; electrical conductivity; thermal conductivity; graphene-copper hybrids; low-temperature graphene deposition; plasma CVD
version4
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1662635595/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Mehta, Ruchit
1Chugh, Sunny
2Chen, Zhihong
titleEnhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.
subject
0Graphene
1Copper Nanowires
2Electrical Conductivity
3Graphene−Copper Hybrids
4Low-Temperature Graphene Deposition
5Plasma Cvd
6Thermal Conductivity
7copper nanowires
8electrical conductivity
9graphene−copper hybrids
10low-temperature graphene deposition
11plasma CVD
12thermal conductivity
general
0English
11530-6992
210.1021/nl504889t
3MEDLINE (ProQuest)
4ProQuest Biological Science Collection
5ProQuest Natural Science Collection
6ProQuest SciTech Collection
7Biological Science Database
8Natural Science Collection
9SciTech Premium Collection
10Health Research Premium Collection
11Health Research Premium Collection (Alumni edition)
sourceidproquest
recordidproquest1662635595
issn
015306992
11530-6992
rsrctypearticle
creationdate2015
addtitleNano letters
searchscope
01007527
11007944
210000004
310000038
410000050
510000120
610000159
710000238
810000253
910000260
1010000270
1110000271
1210000302
13proquest
scope
01007527
11007944
210000004
310000038
410000050
510000120
610000159
710000238
810000253
910000260
1010000270
1110000271
1210000302
13proquest
lsr43
01007527false
11007944false
210000004false
310000038false
410000050false
510000120false
610000159false
710000238false
810000253false
910000260false
1010000270false
1110000271false
1210000302false
contributorMehta, Ruchit
startdate20150311
enddate20150311
citationpf 2024 pt 2030 vol 15 issue 3
lsr30VSR-Enriched:[description, issn, pqid]
sort
titleEnhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.
authorMehta, Ruchit ; Chugh, Sunny ; Chen, Zhihong
creationdate20150311
lso0120150311
facets
frbrgroupid9207727266194271904
frbrtype5
newrecords20181218
languageeng
creationdate2015
topic
0Graphene
1Copper Nanowires
2Electrical Conductivity
3Graphene−Copper Hybrids
4Low-Temperature Graphene Deposition
5Plasma Cvd
6Thermal Conductivity
collection
0MEDLINE (ProQuest)
1ProQuest Biological Science Collection
2ProQuest Natural Science Collection
3ProQuest SciTech Collection
4Biological Science Database
5Natural Science Collection
6SciTech Premium Collection
7Health Research Premium Collection
8Health Research Premium Collection (Alumni edition)
prefilterarticles
rsrctypearticles
creatorcontrib
0Mehta, Ruchit
1Chugh, Sunny
2Chen, Zhihong
jtitleNano letters
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
aulast
0Mehta
1Chugh
2Chen
aufirst
0Ruchit
1Sunny
2Zhihong
au
0Mehta, Ruchit
1Chugh, Sunny
2Chen, Zhihong
addauMehta, Ruchit
atitleEnhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.
jtitleNano letters
risdate20150311
volume15
issue3
spage2024
epage2030
pages2024-2030
eissn1530-6992
formatjournal
genrearticle
ristypeJOUR
doi10.1021/nl504889t
urlhttp://search.proquest.com/docview/1662635595/
issn15306984
date2015-03-11