schliessen

Filtern

 

Bibliotheken

PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.

Conversion-reaction cathodes can potentially double the energy density of current Li-ion batteries. However, the poor cycling stability, low energy efficiency, and low power density of conversion-reaction cathodes limit their applications for Li-ion batteries. Herein, we report a revolutionary advan... Full description

Journal Title: Nano letters November 11, 2015, Vol.15(11), pp.7650-7656
Main Author: Fan, Xiulin
Other Authors: Luo, Chao , Lamb, Julia , Zhu, Yujie , Xu, Kang , Wang, Chunsheng
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: E-ISSN: 1530-6992 ; DOI: 1530-6992 ; DOI: 10.1021/acs.nanolett.5b03601
Link: http://search.proquest.com/docview/1732600970/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1732600970
title: PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.
format: Article
creator:
  • Fan, Xiulin
  • Luo, Chao
  • Lamb, Julia
  • Zhu, Yujie
  • Xu, Kang
  • Wang, Chunsheng
subjects:
  • Cathode Material
  • Feof
  • Pedot
  • Conversion Reaction
ispartof: Nano letters, November 11, 2015, Vol.15(11), pp.7650-7656
description: Conversion-reaction cathodes can potentially double the energy density of current Li-ion batteries. However, the poor cycling stability, low energy efficiency, and low power density of conversion-reaction cathodes limit their applications for Li-ion batteries. Herein, we report a revolutionary advance in a conversion-reaction cathode by developing a core-shell FeOF[at]PEDOT nanorods, in which partial substitution of fluorine with oxygen in FeF sub(3) substantially enhance the reaction kinetics and reduce the potential hysteresis, while conformal nanolayer PEDOT coating provides a roubst fast electronic connection and prevents the side reactions. The FeOF[at]PEDOT nanorods deliver a capacity of 560 mA h g super(-1) at 10 mA g super(-1) with an energy density of >1100 W h kg super(-1), which is more than two times higher than the theoretical energy density of LiCoO sub(2). The FeOF[at]PEDOT nanorods can maintain a capacity of similar to 430 mA h g super(-1) at 50 mA g super(-1) (840 W h kg super(-1)) for over 150 cycles with capacity decay rate of only 0.04% per cycle, which is 2 orders of magnitude lower than the capacity decay rate ever reported among all conversion-reaction cathodes. Detailed characterizations were conducted to identify the structure and mechanism responsible for these significant improvements that could translate into a Li-ion cell with a 2 increase in energy density. Keywords: Cathode material; conversion reaction; FeOF; PEDOT
language: eng
source:
identifier: E-ISSN: 1530-6992 ; DOI: 1530-6992 ; DOI: 10.1021/acs.nanolett.5b03601
fulltext: no_fulltext
issn:
  • 15306992
  • 1530-6992
url: Link


@attributes
ID1230212998
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1732600970
sourceidproquest
recordidTN_proquest1732600970
sourcesystemOther
pqid1732600970
display
typearticle
titlePEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.
creatorFan, Xiulin ; Luo, Chao ; Lamb, Julia ; Zhu, Yujie ; Xu, Kang ; Wang, Chunsheng
contributorFan, Xiulin (correspondence author) ; Fan, Xiulin (record owner)
ispartofNano letters, November 11, 2015, Vol.15(11), pp.7650-7656
identifier
subjectCathode Material ; Feof ; Pedot ; Conversion Reaction
languageeng
source
descriptionConversion-reaction cathodes can potentially double the energy density of current Li-ion batteries. However, the poor cycling stability, low energy efficiency, and low power density of conversion-reaction cathodes limit their applications for Li-ion batteries. Herein, we report a revolutionary advance in a conversion-reaction cathode by developing a core-shell FeOF[at]PEDOT nanorods, in which partial substitution of fluorine with oxygen in FeF sub(3) substantially enhance the reaction kinetics and reduce the potential hysteresis, while conformal nanolayer PEDOT coating provides a roubst fast electronic connection and prevents the side reactions. The FeOF[at]PEDOT nanorods deliver a capacity of 560 mA h g super(-1) at 10 mA g super(-1) with an energy density of >1100 W h kg super(-1), which is more than two times higher than the theoretical energy density of LiCoO sub(2). The FeOF[at]PEDOT nanorods can maintain a capacity of similar to 430 mA h g super(-1) at 50 mA g super(-1) (840 W h kg super(-1)) for over 150 cycles with capacity decay rate of only 0.04% per cycle, which is 2 orders of magnitude lower than the capacity decay rate ever reported among all conversion-reaction cathodes. Detailed characterizations were conducted to identify the structure and mechanism responsible for these significant improvements that could translate into a Li-ion cell with a 2 increase in energy density. Keywords: Cathode material; conversion reaction; FeOF; PEDOT
version5
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1732600970/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Fan, Xiulin
1Luo, Chao
2Lamb, Julia
3Zhu, Yujie
4Xu, Kang
5Wang, Chunsheng
titlePEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.
subject
0Cathode Material
1Feof
2Pedot
3Conversion Reaction
4Cathode material
5FeOF
6PEDOT
7conversion reaction
general
0English
11530-6992
210.1021/acs.nanolett.5b03601
3MEDLINE (ProQuest)
4ProQuest Biological Science Collection
5ProQuest Natural Science Collection
6ProQuest SciTech Collection
7Biological Science Database
8Natural Science Collection
9SciTech Premium Collection
10Health Research Premium Collection
11Health Research Premium Collection (Alumni edition)
sourceidproquest
recordidproquest1732600970
issn
015306992
11530-6992
rsrctypearticle
creationdate2015
addtitleNano letters
searchscope
01007527
11007944
210000004
310000038
410000050
510000120
610000159
710000238
810000253
910000260
1010000270
1110000271
1210000302
13proquest
scope
01007527
11007944
210000004
310000038
410000050
510000120
610000159
710000238
810000253
910000260
1010000270
1110000271
1210000302
13proquest
lsr43
01007527false
11007944false
210000004false
310000038false
410000050false
510000120false
610000159false
710000238false
810000253false
910000260false
1010000270false
1110000271false
1210000302false
contributorFan, Xiulin
startdate20151111
enddate20151111
citationpf 7650 pt 7656 vol 15 issue 11
lsr30VSR-Enriched:[pqid, description, issn]
sort
titlePEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.
authorFan, Xiulin ; Luo, Chao ; Lamb, Julia ; Zhu, Yujie ; Xu, Kang ; Wang, Chunsheng
creationdate20151111
lso0120151111
facets
frbrgroupid7704249121764131976
frbrtype5
newrecords20181218
languageeng
creationdate2015
topic
0Cathode Material
1Feof
2Pedot
3Conversion Reaction
collection
0MEDLINE (ProQuest)
1ProQuest Biological Science Collection
2ProQuest Natural Science Collection
3ProQuest SciTech Collection
4Biological Science Database
5Natural Science Collection
6SciTech Premium Collection
7Health Research Premium Collection
8Health Research Premium Collection (Alumni edition)
prefilterarticles
rsrctypearticles
creatorcontrib
0Fan, Xiulin
1Luo, Chao
2Lamb, Julia
3Zhu, Yujie
4Xu, Kang
5Wang, Chunsheng
jtitleNano letters
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
aulast
0Fan
1Luo
2Lamb
3Zhu
4Xu
5Wang
aufirst
0Xiulin
1Chao
2Julia
3Yujie
4Kang
5Chunsheng
au
0Fan, Xiulin
1Luo, Chao
2Lamb, Julia
3Zhu, Yujie
4Xu, Kang
5Wang, Chunsheng
addauFan, Xiulin
atitlePEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.
jtitleNano letters
risdate20151111
volume15
issue11
spage7650
epage7656
pages7650-7656
eissn1530-6992
formatjournal
genrearticle
ristypeJOUR
doi10.1021/acs.nanolett.5b03601
urlhttp://search.proquest.com/docview/1732600970/
issn15306984
date2015-11-11