schliessen

Filtern

 

Bibliotheken

Energy landscape in protein folding and unfolding.

Protein folding represents an open question in science, and the free-energy landscape framework is one way to describe it. In particular, the role played by water in the processes is of special interest. To clarify these issues we study, during folding–unfolding, the temperature evolution of the mag... Full description

Journal Title: Proceedings of the National Academy of Sciences of the United States of America March 22, 2016, Vol.113(12), pp.3159-3163
Main Author: Mallamace, Francesco
Other Authors: Corsaro, Carmelo , Mallamace, Domenico , Vasi, Sebastiano , Vasi, Cirino , Baglioni, Piero , Buldyrev, Sergey V , Chen, Sow-Hsin , Stanley, H Eugene
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: E-ISSN: 1091-6490 ; DOI: 10.1073/pnas.1524864113
Link: http://search.proquest.com/docview/1777985266/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1777985266
title: Energy landscape in protein folding and unfolding.
format: Article
creator:
  • Mallamace, Francesco
  • Corsaro, Carmelo
  • Mallamace, Domenico
  • Vasi, Sebastiano
  • Vasi, Cirino
  • Baglioni, Piero
  • Buldyrev, Sergey V
  • Chen, Sow-Hsin
  • Stanley, H Eugene
subjects:
  • Muramidase–Chemistry
  • Protein Denaturation–Chemistry
  • Protein Folding–Chemistry
  • Proton Magnetic Resonance Spectroscopy–Chemistry
  • Temperature–Chemistry
  • Muramidase
  • Energy Landscape
  • Hydration Water
  • Protein Folding
  • Proton NMR
ispartof: Proceedings of the National Academy of Sciences of the United States of America, March 22, 2016, Vol.113(12), pp.3159-3163
description: Protein folding represents an open question in science, and the free-energy landscape framework is one way to describe it. In particular, the role played by water in the processes is of special interest. To clarify these issues we study, during folding–unfolding, the temperature evolution of the magnetization for hydrophilic and hydrophobic groups of hydrated lysozyme using NMR spectroscopy. Our findings confirm the validity of the theoretical scenario of a process dominated by different energetic routes, also explaining the water role in the protein configuration stability. Here, we also highlight that the protein native state limit is represented by the water singular temperature that characterizes its compressibility and expansivity and is the origin of the thermodynamical anomalies of its liquid state.
language: eng
source:
identifier: E-ISSN: 1091-6490 ; DOI: 10.1073/pnas.1524864113
fulltext: fulltext
issn:
  • 10916490
  • 1091-6490
url: Link


@attributes
ID1827246028
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1777985266
sourceidproquest
recordidTN_proquest1777985266
sourcesystemPC
pqid1777985266
galeid452289432
display
typearticle
titleEnergy landscape in protein folding and unfolding.
creatorMallamace, Francesco ; Corsaro, Carmelo ; Mallamace, Domenico ; Vasi, Sebastiano ; Vasi, Cirino ; Baglioni, Piero ; Buldyrev, Sergey V ; Chen, Sow-Hsin ; Stanley, H Eugene
contributorMallamace, Francesco (correspondence author) ; Mallamace, Francesco (record owner)
ispartofProceedings of the National Academy of Sciences of the United States of America, March 22, 2016, Vol.113(12), pp.3159-3163
identifierE-ISSN: 1091-6490 ; DOI: 10.1073/pnas.1524864113
subjectMuramidase–Chemistry ; Protein Denaturation–Chemistry ; Protein Folding–Chemistry ; Proton Magnetic Resonance Spectroscopy–Chemistry ; Temperature–Chemistry ; Muramidase ; Energy Landscape ; Hydration Water ; Protein Folding ; Proton NMR
languageeng
source
descriptionProtein folding represents an open question in science, and the free-energy landscape framework is one way to describe it. In particular, the role played by water in the processes is of special interest. To clarify these issues we study, during folding–unfolding, the temperature evolution of the magnetization for hydrophilic and hydrophobic groups of hydrated lysozyme using NMR spectroscopy. Our findings confirm the validity of the theoretical scenario of a process dominated by different energetic routes, also explaining the water role in the protein configuration stability. Here, we also highlight that the protein native state limit is represented by the water singular temperature that characterizes its compressibility and expansivity and is the origin of the thermodynamical anomalies of its liquid state.
version7
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1777985266/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Mallamace, Francesco
1Corsaro, Carmelo
2Mallamace, Domenico
3Vasi, Sebastiano
4Vasi, Cirino
5Baglioni, Piero
6Buldyrev, Sergey V
7Chen, Sow-Hsin
8Stanley, H Eugene
titleEnergy landscape in protein folding and unfolding.
subject
0Muramidase–Chemistry
1Protein Denaturation–Chemistry
2Protein Folding–Chemistry
3Proton Magnetic Resonance Spectroscopy–Chemistry
4Temperature–Chemistry
5Muramidase
6Energy Landscape
7Hydration Water
8Protein Folding
9Proton NMR
10energy landscape
11hydration water
12protein folding
13proton NMR
general
0English
110.1073/pnas.1524864113
2MEDLINE (ProQuest)
3ProQuest Biological Science Collection
4ProQuest Natural Science Collection
5ProQuest SciTech Collection
6Biological Science Database
7Natural Science Collection
8SciTech Premium Collection
9Health Research Premium Collection
10Health Research Premium Collection (Alumni edition)
11Biological Science Index (ProQuest)
sourceidproquest
recordidproquest1777985266
issn
010916490
11091-6490
rsrctypearticle
creationdate2016
addtitleProceedings of the National Academy of Sciences of the United States of America
searchscope
01007527
11007944
21009130
310000004
410000038
510000050
610000120
710000159
810000238
910000253
1010000260
1110000270
1210000271
1310000302
1410000350
15proquest
scope
01007527
11007944
21009130
310000004
410000038
510000050
610000120
710000159
810000238
910000253
1010000260
1110000270
1210000271
1310000302
1410000350
15proquest
lsr43
01007527false
11007944false
21009130false
310000004false
410000038false
510000050false
610000120false
710000159false
810000238false
910000253false
1010000260false
1110000270false
1210000271false
1310000302false
1410000350false
contributorMallamace, Francesco
startdate20160322
enddate20160322
citationpf 3159 pt 3163 vol 113 issue 12
lsr30VSR-Enriched:[galeid, description, pqid, issn]
sort
titleEnergy landscape in protein folding and unfolding.
authorMallamace, Francesco ; Corsaro, Carmelo ; Mallamace, Domenico ; Vasi, Sebastiano ; Vasi, Cirino ; Baglioni, Piero ; Buldyrev, Sergey V ; Chen, Sow-Hsin ; Stanley, H Eugene
creationdate20160322
lso0120160322
facets
frbrgroupid8274686841869409785
frbrtype5
newrecords20181218
languageeng
creationdate2016
topic
0Muramidase–Chemistry
1Protein Denaturation–Chemistry
2Protein Folding–Chemistry
3Proton Magnetic Resonance Spectroscopy–Chemistry
4Temperature–Chemistry
5Muramidase
6Energy Landscape
7Hydration Water
8Protein Folding
9Proton NMR
collection
0MEDLINE (ProQuest)
1ProQuest Biological Science Collection
2ProQuest Natural Science Collection
3ProQuest SciTech Collection
4Biological Science Database
5Natural Science Collection
6SciTech Premium Collection
7Health Research Premium Collection
8Health Research Premium Collection (Alumni edition)
9Biological Science Index (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Mallamace, Francesco
1Corsaro, Carmelo
2Mallamace, Domenico
3Vasi, Sebastiano
4Vasi, Cirino
5Baglioni, Piero
6Buldyrev, Sergey V
7Chen, Sow-Hsin
8Stanley, H Eugene
jtitleProceedings of the National Academy of Sciences of the United States of America
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Mallamace
1Corsaro
2Vasi
3Baglioni
4Buldyrev
5Chen
6Stanley
aufirst
0Francesco
1Carmelo
2Domenico
3Sebastiano
4Cirino
5Piero
6Sergey V
7Sow-Hsin
8H Eugene
au
0Mallamace, Francesco
1Corsaro, Carmelo
2Mallamace, Domenico
3Vasi, Sebastiano
4Vasi, Cirino
5Baglioni, Piero
6Buldyrev, Sergey V
7Chen, Sow-Hsin
8Stanley, H Eugene
addauMallamace, Francesco
atitleEnergy landscape in protein folding and unfolding.
jtitleProceedings of the National Academy of Sciences of the United States of America
risdate20160322
volume113
issue12
spage3159
epage3163
pages3159-3163
eissn1091-6490
formatjournal
genrearticle
ristypeJOUR
doi10.1073/pnas.1524864113
urlhttp://search.proquest.com/docview/1777985266/
issn00278424
date2016-03-22