schliessen

Filtern

 

Bibliotheken

Phase-Coding Self-Testing Quantum Random Number Generator

How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014) 140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent a... Full description

Journal Title: Chinese Physics Letters August 2015, Vol.32(8), pp.080302-1-080302-3
Main Author: Song, Xiao-Tian
Other Authors: Li, Hong-Wei , Yin, Zhen-Qiang , Liang, Wen-Ye , Zhang, Chun-Mei , Han, Yun-Guang , Chen, Wei , Han, Zheng-Fu
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0256-307X ; E-ISSN: 1741-3540 ; DOI: 10.1088/0256-307X/32/8/080302
Link: http://search.proquest.com/docview/1825444965/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1825444965
title: Phase-Coding Self-Testing Quantum Random Number Generator
format: Article
creator:
  • Song, Xiao-Tian
  • Li, Hong-Wei
  • Yin, Zhen-Qiang
  • Liang, Wen-Ye
  • Zhang, Chun-Mei
  • Han, Yun-Guang
  • Chen, Wei
  • Han, Zheng-Fu
subjects:
  • Strings
  • Generators
  • Standard Deviation
  • Randomness
  • Quantum Cryptography
  • Running
  • Random Numbers
  • Test Procedures
  • Solid State Milieux (General) (So)
  • Physics (General) (Ah)
ispartof: Chinese Physics Letters, August 2015, Vol.32(8), pp.080302-1-080302-3
description: How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014) 140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
language: eng
source:
identifier: ISSN: 0256-307X ; E-ISSN: 1741-3540 ; DOI: 10.1088/0256-307X/32/8/080302
fulltext: no_fulltext
issn:
  • 0256307X
  • 0256-307X
  • 17413540
  • 1741-3540
url: Link


@attributes
ID1806458726
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1825444965
sourceidproquest
recordidTN_proquest1825444965
sourcesystemPC
pqid1825444965
display
typearticle
titlePhase-Coding Self-Testing Quantum Random Number Generator
creatorSong, Xiao-Tian ; Li, Hong-Wei ; Yin, Zhen-Qiang ; Liang, Wen-Ye ; Zhang, Chun-Mei ; Han, Yun-Guang ; Chen, Wei ; Han, Zheng-Fu
contributorSong, Xiao-Tian (correspondence author)
ispartofChinese Physics Letters, August 2015, Vol.32(8), pp.080302-1-080302-3
identifier
subjectStrings ; Generators ; Standard Deviation ; Randomness ; Quantum Cryptography ; Running ; Random Numbers ; Test Procedures ; Solid State Milieux (General) (So) ; Physics (General) (Ah)
descriptionHow to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014) 140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
languageeng
source
version2
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1825444965/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Song, Xiao-Tian
1Li, Hong-Wei
2Yin, Zhen-Qiang
3Liang, Wen-Ye
4Zhang, Chun-Mei
5Han, Yun-Guang
6Chen, Wei
7Han, Zheng-Fu
titlePhase-Coding Self-Testing Quantum Random Number Generator
descriptionHow to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014) 140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
subject
0Strings
1Generators
2Standard Deviation
3Randomness
4Quantum Cryptography
5Running
6Random Numbers
7Test Procedures
8Solid State Milieux (General) (So)
9Physics (General) (Ah)
1090
1170
general
0English
110.1088/0256-307X/32/8/080302
2Aerospace Database
3Solid State and Superconductivity Abstracts
4Advanced Technologies Database with Aerospace
5Technology Research Database
6ProQuest Advanced Technologies & Aerospace Collection
7ProQuest Technology Collection
8ProQuest SciTech Collection
9Advanced Technologies & Aerospace Database
10SciTech Premium Collection
11Technology Collection
sourceidproquest
recordidproquest1825444965
issn
00256307X
10256-307X
217413540
31741-3540
rsrctypearticle
creationdate2015
addtitleChinese Physics Letters
searchscope
01007416
11007481
21007944
310000012
410000015
510000022
610000045
710000053
810000120
910000195
1010000203
1110000209
1210000233
1310000260
1410000265
15proquest
scope
01007416
11007481
21007944
310000012
410000015
510000022
610000045
710000053
810000120
910000195
1010000203
1110000209
1210000233
1310000260
1410000265
15proquest
lsr43
01007416false
11007481false
21007944false
310000012false
410000015false
510000022false
610000045false
710000053false
810000120false
910000195false
1010000203false
1110000209false
1210000233false
1310000260false
1410000265false
contributorSong, Xiao-Tian
startdate20150801
enddate20150801
citationpf 080302 pt 1-080302-3 vol 32 issue 8
lsr30VSR-Enriched:[pqid]
sort
titlePhase-Coding Self-Testing Quantum Random Number Generator
authorSong, Xiao-Tian ; Li, Hong-Wei ; Yin, Zhen-Qiang ; Liang, Wen-Ye ; Zhang, Chun-Mei ; Han, Yun-Guang ; Chen, Wei ; Han, Zheng-Fu
creationdate20150801
lso0120150801
facets
frbrgroupid6097469081348052274
frbrtype5
languageeng
creationdate2015
topic
0Strings
1Generators
2Standard Deviation
3Randomness
4Quantum Cryptography
5Running
6Random Numbers
7Test Procedures
8Solid State Milieux (General) (So)
9Physics (General) (Ah)
collection
0Aerospace Database
1Solid State and Superconductivity Abstracts
2Advanced Technologies Database with Aerospace
3Technology Research Database
4ProQuest Advanced Technologies & Aerospace Collection
5ProQuest Technology Collection
6ProQuest SciTech Collection
7Advanced Technologies & Aerospace Database
8SciTech Premium Collection
9Technology Collection
prefilterarticles
rsrctypearticles
creatorcontrib
0Song, Xiao-Tian
1Li, Hong-Wei
2Yin, Zhen-Qiang
3Liang, Wen-Ye
4Zhang, Chun-Mei
5Han, Yun-Guang
6Chen, Wei
7Han, Zheng-Fu
jtitleChinese Physics Letters
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextno_fulltext
addata
aulast
0Song
1Li
2Yin
3Liang
4Zhang
5Han
6Chen
aufirst
0Xiao-Tian
1Hong-Wei
2Zhen-Qiang
3Wen-Ye
4Chun-Mei
5Yun-Guang
6Wei
7Zheng-Fu
au
0Song, Xiao-Tian
1Li, Hong-Wei
2Yin, Zhen-Qiang
3Liang, Wen-Ye
4Zhang, Chun-Mei
5Han, Yun-Guang
6Chen, Wei
7Han, Zheng-Fu
addauSong, Xiao-Tian
atitlePhase-Coding Self-Testing Quantum Random Number Generator
jtitleChinese Physics Letters
risdate20150801
volume32
issue8
spage080302
epage1-080302-3
pages080302-1-080302-3
issn0256-307X
eissn1741-3540
formatjournal
genrearticle
ristypeJOUR
abstractHow to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014) 140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
doi10.1088/0256-307X/32/8/080302
urlhttp://search.proquest.com/docview/1825444965/
date2015-08-01