schliessen

Filtern

 

Bibliotheken

Performance of SnO sub(2)/carbon nanotube composite electrode materials synthesised by the Pechini method

SnO sub(2)/CNT (CNT: carbon nanotube) composite electrode materials have been successfully synthesised using the Pechini method. The crystal structures of SnO sub(2)/CNTs were identified by X-ray diffraction. The surface morphology and internal structure, as revealed by scanning electron microscopy... Full description

Journal Title: Micro & Nano Letters January 2016, Vol.11(1), pp.54-56
Main Author: Liu, Rui
Other Authors: Yang, Wein-Duo , Fang, Hsin-Yun
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: E-ISSN: 1750-0443 ; DOI: 10.1049/mnl.2015.0296
Link: http://search.proquest.com/docview/1825513105/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest1825513105
title: Performance of SnO sub(2)/carbon nanotube composite electrode materials synthesised by the Pechini method
format: Article
creator:
  • Liu, Rui
  • Yang, Wein-Duo
  • Fang, Hsin-Yun
subjects:
  • Electrode Materials
  • Carbon Nanotubes
  • Walls
  • Tin Dioxide
  • Tin Oxides
  • Diffraction
  • Lithium Batteries
  • Nanoparticles
  • Applications (So)
  • Design Principles (Mt)
  • (An)
  • Nanocomposites
  • Electrochemical Electrodes
  • Crystal Structure
  • Carbon Nanotubes
  • X-Ray Diffraction
  • Surface Morphology
  • Nanoparticles
  • Transmission Electron Microscopy
  • Tin Compounds
  • Secondary Cells
  • Nanofabrication
  • Scanning Electron Microscopy
  • Reversible Discharge Capacities
  • Internal Structure
  • Transmission Electron Microscopy
  • Surface Morphology
  • Scanning Electron Microscopy
  • Lithium Batteries
  • Sno2-Carbon Nanotube Composite Electrode Materials
  • Nanoparticles
  • Pechini Method
  • Crystal Structures
  • Sno2-C
  • Capacity Retention
  • Charge-Discharge Properties
  • X-Ray Diffraction
ispartof: Micro & Nano Letters, January 2016, Vol.11(1), pp.54-56
description: SnO sub(2)/CNT (CNT: carbon nanotube) composite electrode materials have been successfully synthesised using the Pechini method. The crystal structures of SnO sub(2)/CNTs were identified by X-ray diffraction. The surface morphology and internal structure, as revealed by scanning electron microscopy and transmission electron microscopy, indicated that SnO sub(2) nanoparticles were embedded in the CNT matrix or dispersed homogeneously on the outer walls of the CNTs. Furthermore, the charge-discharge properties of SnO sub(2)/CNT composite electrode materials showed that the reversible discharge capacities of the SnO sub(2)/CNT composite electrode materials were enhanced to 1062 mAh/g compared with that of pure SnO sub(2) nanoparticles, and the capacity retention remained at approximately 91% after the 12th cycle, improving the lifetime of the lithium batteries greatly.
language: eng
source:
identifier: E-ISSN: 1750-0443 ; DOI: 10.1049/mnl.2015.0296
fulltext: fulltext
issn:
  • 17500443
  • 1750-0443
url: Link


@attributes
ID972792946
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid1825513105
sourceidproquest
recordidTN_proquest1825513105
sourcesystemOther
pqid1825513105
display
typearticle
titlePerformance of SnO sub(2)/carbon nanotube composite electrode materials synthesised by the Pechini method
creatorLiu, Rui ; Yang, Wein-Duo ; Fang, Hsin-Yun
contributorLiu, Rui (correspondence author)
ispartofMicro & Nano Letters, January 2016, Vol.11(1), pp.54-56
identifierE-ISSN: 1750-0443 ; DOI: 10.1049/mnl.2015.0296
subjectElectrode Materials ; Carbon Nanotubes ; Walls ; Tin Dioxide ; Tin Oxides ; Diffraction ; Lithium Batteries ; Nanoparticles ; Applications (So) ; Design Principles (Mt) ; (An) ; Nanocomposites ; Electrochemical Electrodes ; Crystal Structure ; Carbon Nanotubes ; X-Ray Diffraction ; Surface Morphology ; Nanoparticles ; Transmission Electron Microscopy ; Tin Compounds ; Secondary Cells ; Nanofabrication ; Scanning Electron Microscopy ; Reversible Discharge Capacities ; Internal Structure ; Transmission Electron Microscopy ; Surface Morphology ; Scanning Electron Microscopy ; Lithium Batteries ; Sno2-Carbon Nanotube Composite Electrode Materials ; Nanoparticles ; Pechini Method ; Crystal Structures ; Sno2-C ; Capacity Retention ; Charge-Discharge Properties ; X-Ray Diffraction
descriptionSnO sub(2)/CNT (CNT: carbon nanotube) composite electrode materials have been successfully synthesised using the Pechini method. The crystal structures of SnO sub(2)/CNTs were identified by X-ray diffraction. The surface morphology and internal structure, as revealed by scanning electron microscopy and transmission electron microscopy, indicated that SnO sub(2) nanoparticles were embedded in the CNT matrix or dispersed homogeneously on the outer walls of the CNTs. Furthermore, the charge-discharge properties of SnO sub(2)/CNT composite electrode materials showed that the reversible discharge capacities of the SnO sub(2)/CNT composite electrode materials were enhanced to 1062 mAh/g compared with that of pure SnO sub(2) nanoparticles, and the capacity retention remained at approximately 91% after the 12th cycle, improving the lifetime of the lithium batteries greatly.
languageeng
source
version3
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/1825513105/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Liu, Rui
1Yang, Wein-Duo
2Fang, Hsin-Yun
titlePerformance of SnO sub(2)/carbon nanotube composite electrode materials synthesised by the Pechini method
descriptionSnO sub(2)/CNT (CNT: carbon nanotube) composite electrode materials have been successfully synthesised using the Pechini method. The crystal structures of SnO sub(2)/CNTs were identified by X-ray diffraction. The surface morphology and internal structure, as revealed by scanning electron microscopy and transmission electron microscopy, indicated that SnO sub(2) nanoparticles were embedded in the CNT matrix or dispersed homogeneously on the outer walls of the CNTs. Furthermore, the charge-discharge properties of SnO sub(2)/CNT composite electrode materials showed that the reversible discharge capacities of the SnO sub(2)/CNT composite electrode materials were enhanced to 1062 mAh/g compared with that of pure SnO sub(2) nanoparticles, and the capacity retention remained at approximately 91% after the 12th cycle, improving the lifetime of the lithium batteries greatly.
subject
0Electrode Materials
1Carbon Nanotubes
2Walls
3Tin Dioxide
4Tin Oxides
5Diffraction
6Lithium Batteries
7Nanoparticles
8Applications (So)
9Design Principles (Mt)
10(An)
11Nanocomposites
12Electrochemical Electrodes
13Crystal Structure
14X-Ray Diffraction
15Surface Morphology
16Transmission Electron Microscopy
17Tin Compounds
18Secondary Cells
19Nanofabrication
20Scanning Electron Microscopy
21Reversible Discharge Capacities
22Internal Structure
23Sno2-Carbon Nanotube Composite Electrode Materials
24Pechini Method
25Crystal Structures
26Sno2-C
27Capacity Retention
28Charge-Discharge Properties
2984
3061
31Yes
32nanocomposites
33electrochemical electrodes
34crystal structure
35carbon nanotubes
36X-ray diffraction
37surface morphology
38nanoparticles
39transmission electron microscopy
40tin compounds
41secondary cells
42nanofabrication
43scanning electron microscopy
44reversible discharge capacities
45internal structure
46lithium batteries
47SnO2-carbon nanotube composite electrode materials
48Pechini method
49crystal structures
50SnO2-C
51capacity retention
52charge-discharge properties
general
0English
110.1049/mnl.2015.0296
2ANTE: Abstracts in New Technology & Engineering
3Solid State and Superconductivity Abstracts
4Mechanical & Transportation Engineering Abstracts
5Advanced Technologies Database with Aerospace
6Engineering Research Database
7Technology Research Database
8ProQuest Engineering Collection
9ProQuest Advanced Technologies & Aerospace Collection
10ProQuest Technology Collection
11ProQuest SciTech Collection
12Advanced Technologies & Aerospace Database
13Materials Science & Engineering Database
14SciTech Premium Collection
15Technology Collection
sourceidproquest
recordidproquest1825513105
issn
017500443
11750-0443
rsrctypearticle
creationdate2016
addtitleMicro & Nano Letters
searchscope
01007421
11007481
21007526
31007944
410000012
510000013
610000015
710000022
810000041
910000045
1010000053
1110000120
1210000195
1310000203
1410000209
1510000233
1610000250
1710000260
1810000265
19proquest
scope
01007421
11007481
21007526
31007944
410000012
510000013
610000015
710000022
810000041
910000045
1010000053
1110000120
1210000195
1310000203
1410000209
1510000233
1610000250
1710000260
1810000265
19proquest
lsr43
01007421false
11007481false
21007526false
31007944false
410000012false
510000013false
610000015false
710000022false
810000041false
910000045false
1010000053false
1110000120false
1210000195false
1310000203false
1410000209false
1510000233false
1610000250false
1710000260false
1810000265false
contributorLiu, Rui
startdate20160101
enddate20160101
citationpf 54 pt 56 vol 11 issue 1
lsr30VSR-Enriched:[issn, pqid]
sort
titlePerformance of SnO sub(2)/carbon nanotube composite electrode materials synthesised by the Pechini method
authorLiu, Rui ; Yang, Wein-Duo ; Fang, Hsin-Yun
creationdate20160101
lso0120160101
facets
frbrgroupid6698716321175219411
frbrtype5
languageeng
creationdate2016
topic
0Electrode Materials
1Carbon Nanotubes
2Walls
3Tin Dioxide
4Tin Oxides
5Diffraction
6Lithium Batteries
7Nanoparticles
8Applications (So)
9Design Principles (Mt)
10(An)
11Nanocomposites
12Electrochemical Electrodes
13Crystal Structure
14X-Ray Diffraction
15Surface Morphology
16Transmission Electron Microscopy
17Tin Compounds
18Secondary Cells
19Nanofabrication
20Scanning Electron Microscopy
21Reversible Discharge Capacities
22Internal Structure
23Sno2-Carbon Nanotube Composite Electrode Materials
24Pechini Method
25Crystal Structures
26Sno2-C
27Capacity Retention
28Charge-Discharge Properties
collection
0ANTE: Abstracts in New Technology & Engineering
1Solid State and Superconductivity Abstracts
2Mechanical & Transportation Engineering Abstracts
3Advanced Technologies Database with Aerospace
4Engineering Research Database
5Technology Research Database
6ProQuest Engineering Collection
7ProQuest Advanced Technologies & Aerospace Collection
8ProQuest Technology Collection
9ProQuest SciTech Collection
10Advanced Technologies & Aerospace Database
11Materials Science & Engineering Database
12SciTech Premium Collection
13Technology Collection
prefilterarticles
rsrctypearticles
creatorcontrib
0Liu, Rui
1Yang, Wein-Duo
2Fang, Hsin-Yun
jtitleMicro & Nano Letters
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Liu
1Yang
2Fang
aufirst
0Rui
1Wein-Duo
2Hsin-Yun
au
0Liu, Rui
1Yang, Wein-Duo
2Fang, Hsin-Yun
addauLiu, Rui
atitlePerformance of SnO sub(2)/carbon nanotube composite electrode materials synthesised by the Pechini method
jtitleMicro & Nano Letters
risdate20160101
volume11
issue1
spage54
epage56
pages54-56
eissn1750-0443
formatjournal
genrearticle
ristypeJOUR
abstractSnO sub(2)/CNT (CNT: carbon nanotube) composite electrode materials have been successfully synthesised using the Pechini method. The crystal structures of SnO sub(2)/CNTs were identified by X-ray diffraction. The surface morphology and internal structure, as revealed by scanning electron microscopy and transmission electron microscopy, indicated that SnO sub(2) nanoparticles were embedded in the CNT matrix or dispersed homogeneously on the outer walls of the CNTs. Furthermore, the charge-discharge properties of SnO sub(2)/CNT composite electrode materials showed that the reversible discharge capacities of the SnO sub(2)/CNT composite electrode materials were enhanced to 1062 mAh/g compared with that of pure SnO sub(2) nanoparticles, and the capacity retention remained at approximately 91% after the 12th cycle, improving the lifetime of the lithium batteries greatly.
doi10.1049/mnl.2015.0296
urlhttp://search.proquest.com/docview/1825513105/
issnMicro & Nano Letters
date2016-01-01