schliessen

Filtern

 

Bibliotheken

Nanoscale thermal imaging of dissipation in quantum systems

Energy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information,... Full description

Journal Title: arXiv.org Sep 6, 2016
Main Author: Halbertal, Dorri
Other Authors: Cuppens, Jo , Embon, Lior , Anahory, Yonathan , Naren, H , Sarkar, Jayanta , Ronen, Yuval , Myasoedov, Yury , Levitov, Leonid , Joselevich, Ernesto , Geim, Andre , Zeldov, Eli
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: DOI: 10.1038/nature19843
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest2071543264
title: Nanoscale thermal imaging of dissipation in quantum systems
format: Article
creator:
  • Halbertal, Dorri
  • Cuppens, Jo
  • Embon, Lior
  • Anahory, Yonathan
  • Naren, H
  • Sarkar, Jayanta
  • Ronen, Yuval
  • Myasoedov, Yury
  • Levitov, Leonid
  • Joselevich, Ernesto
  • Geim, Andre
  • Zeldov, Eli
subjects:
  • Energy Dissipation
  • Heat Detection
  • Quantum Dots
  • Quantum Phenomena
  • Organic Chemistry
  • Carbon Nanotubes
  • Graphene
  • Sensitivity
  • Energy Dissipation
  • Single Electrons
  • Condensed Matter Physics
  • Thermal Imaging
  • Quantum Dots
  • Condensed Matter
  • Qubits (Quantum Computing)
  • Mesoscale and Nanoscale Physics
  • Materials Science
  • Superconductivity
  • Instrumentation and Detectors
ispartof: arXiv.org, Sep 6, 2016
description: Energy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning...
language: eng
source:
identifier: DOI: 10.1038/nature19843
fulltext: fulltext_linktorsrc
url: Link


@attributes
ID1536660710
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid2071543264
sourceidproquest
recordidTN_proquest2071543264
sourcesystemPC
pqid2071543264
galeid470482713
display
typearticle
titleNanoscale thermal imaging of dissipation in quantum systems
creatorHalbertal, Dorri ; Cuppens, Jo ; Embon, Lior ; Anahory, Yonathan ; Naren, H ; Sarkar, Jayanta ; Ronen, Yuval ; Myasoedov, Yury ; Levitov, Leonid ; Joselevich, Ernesto ; Geim, Andre ; Zeldov, Eli
contributorZeldov, Eli (pacrepositoryorg)
ispartofarXiv.org, Sep 6, 2016
identifierDOI: 10.1038/nature19843
subjectEnergy Dissipation ; Heat Detection ; Quantum Dots ; Quantum Phenomena ; Organic Chemistry ; Carbon Nanotubes ; Graphene ; Sensitivity ; Energy Dissipation ; Single Electrons ; Condensed Matter Physics ; Thermal Imaging ; Quantum Dots ; Condensed Matter ; Qubits (Quantum Computing) ; Mesoscale and Nanoscale Physics ; Materials Science ; Superconductivity ; Instrumentation and Detectors
descriptionEnergy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning...
languageeng
source
version9
oafree_for_read
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
linktorsrc$$Uhttp://search.proquest.com/docview/2071543264/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Halbertal, Dorri
1Cuppens, Jo
2Embon, Lior
3Anahory, Yonathan
4Naren, H
5Sarkar, Jayanta
6Ronen, Yuval
7Myasoedov, Yury
8Levitov, Leonid
9Joselevich, Ernesto
10Geim, Andre
11Zeldov, Eli
titleNanoscale thermal imaging of dissipation in quantum systems
descriptionEnergy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning...
subject
0Energy Dissipation
1Heat Detection
2Quantum Dots
3Quantum Phenomena
4Organic Chemistry
5Carbon Nanotubes
6Graphene
7Sensitivity
8Single Electrons
9Condensed Matter Physics
10Thermal Imaging
11Condensed Matter
12Qubits (Quantum Computing)
13Mesoscale and Nanoscale Physics
14Materials Science
15Superconductivity
16Instrumentation and Detectors
general
0English
1Cornell University Library, arXiv.org
210.1038/nature19843
3Engineering Database
4Publicly Available Content Database
5ProQuest Engineering Collection
6ProQuest Technology Collection
7ProQuest SciTech Collection
8Materials Science & Engineering Database
9ProQuest Central (new)
10ProQuest Central Korea
11SciTech Premium Collection
12Technology Collection
13ProQuest Central Essentials
14ProQuest One Academic
15Engineering Collection (ProQuest)
sourceidproquest
recordidproquest2071543264
rsrctypearticle
creationdate2016
addtitlearXiv.org
searchscope
01007853
11008875
21008886
31009127
41009240
510000041
610000053
710000120
810000250
910000255
1010000256
1110000258
1210000260
1310000265
1410000268
1510000281
1610000348
1710000356
1810000360
19proquest
scope
01007853
11008875
21008886
31009127
41009240
510000041
610000053
710000120
810000250
910000255
1010000256
1110000258
1210000260
1310000265
1410000268
1510000281
1610000348
1710000356
1810000360
19proquest
lsr43
01007853true
11008875true
21008886true
31009127true
41009240true
510000041true
610000053true
710000120true
810000250true
910000255true
1010000256true
1110000258true
1210000260true
1310000265true
1410000268true
1510000281true
1610000348true
1710000356true
1810000360true
startdate20160906
enddate20160906
lsr30VSR-Enriched:[issn, issue, eissn, galeid, pages, pqid, vol]
sort
titleNanoscale thermal imaging of dissipation in quantum systems
authorHalbertal, Dorri ; Cuppens, Jo ; Embon, Lior ; Anahory, Yonathan ; Naren, H ; Sarkar, Jayanta ; Ronen, Yuval ; Myasoedov, Yury ; Levitov, Leonid ; Joselevich, Ernesto ; Geim, Andre ; Zeldov, Eli
creationdate20160906
lso0120160906
facets
frbrgroupid-4875995302675535179
frbrtype5
newrecords20180917
languageeng
creationdate2016
topic
0Energy Dissipation
1Heat Detection
2Quantum Dots
3Quantum Phenomena
4Organic Chemistry
5Carbon Nanotubes
6Graphene
7Sensitivity
8Single Electrons
9Condensed Matter Physics
10Thermal Imaging
11Condensed Matter
12Qubits (Quantum Computing)
13Mesoscale and Nanoscale Physics
14Materials Science
15Superconductivity
16Instrumentation and Detectors
collection
0Engineering Database
1Publicly Available Content Database
2ProQuest Engineering Collection
3ProQuest Technology Collection
4ProQuest SciTech Collection
5Materials Science & Engineering Database
6ProQuest Central (new)
7ProQuest Central Korea
8SciTech Premium Collection
9Technology Collection
10ProQuest Central Essentials
11ProQuest One Academic
12Engineering Collection (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Halbertal, Dorri
1Cuppens, Jo
2Embon, Lior
3Anahory, Yonathan
4Naren, H
5Sarkar, Jayanta
6Ronen, Yuval
7Myasoedov, Yury
8Levitov, Leonid
9Joselevich, Ernesto
10Geim, Andre
11Zeldov, Eli
jtitlearXiv.org
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext_linktorsrc
addata
aulast
0Halbertal
1Cuppens
2Embon
3Anahory
4Naren
5Sarkar
6Ronen
7Myasoedov
8Levitov
9Joselevich
10Geim
11Zeldov
aufirst
0Dorri
1Jo
2Lior
3Yonathan
4H
5Jayanta
6Yuval
7Yury
8Leonid
9Ernesto
10Andre
11Eli
au
0Halbertal, Dorri
1Cuppens, Jo
2Embon, Lior
3Anahory, Yonathan
4Naren, H
5Sarkar, Jayanta
6Ronen, Yuval
7Myasoedov, Yury
8Levitov, Leonid
9Joselevich, Ernesto
10Geim, Andre
11Zeldov, Eli
atitleNanoscale thermal imaging of dissipation in quantum systems
jtitlearXiv.org
risdate20160906
formatjournal
genrearticle
ristypeJOUR
abstractEnergy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning...
copIthaca
pubCornell University Library, arXiv.org
doi10.1038/nature19843
urlhttp://search.proquest.com/docview/2071543264/
issue7629
pages407-410
volume539
issn00280836
eissn14764687
oafree_for_read
date2016-09-06