schliessen

Filtern

 

Bibliotheken

Electrostatically induced quantum point contact in bilayer graphene

We report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as \(R \sim 10~\)G\(\Omega\). This exceeds previously reported values of \(R =~\)10 - 100 k\(\Omega\).\cite{Zou2010,Yan2010,Zhu2016a} We attr... Full description

Journal Title: arXiv.org Jan 16, 2018
Main Author: Overweg, Hiske
Other Authors: Eggimann, Hannah , Chen, Xi , Slizovskiy, Sergey , Eich, Marius , Pisoni, Riccardo , Lee, Yongjin , Rickhaus, Peter , Watanabe, Kenji , Taniguchi, Takashi , Fal'Ko, Vladimir , Ihn, Thomas , Ensslin, Klaus
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: DOI: 10.1021/acs.nanolett.7b04666
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest2071814473
title: Electrostatically induced quantum point contact in bilayer graphene
format: Article
creator:
  • Overweg, Hiske
  • Eggimann, Hannah
  • Chen, Xi
  • Slizovskiy, Sergey
  • Eich, Marius
  • Pisoni, Riccardo
  • Lee, Yongjin
  • Rickhaus, Peter
  • Watanabe, Kenji
  • Taniguchi, Takashi
  • Fal'Ko, Vladimir
  • Ihn, Thomas
  • Ensslin, Klaus
subjects:
  • Magnetic Fields
  • Crossovers
  • Graphene
  • Current Carriers
  • Point Contact
  • Charge Density
  • Counting
  • Depletion
  • Electronic Devices
  • Resistance
  • Bilayers
  • Carrier Density
ispartof: arXiv.org, Jan 16, 2018
description: We report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as \(R \sim 10~\)G\(\Omega\). This exceeds previously reported values of \(R =~\)10 - 100 k\(\Omega\).\cite{Zou2010,Yan2010,Zhu2016a} We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of \(\Delta G = 2~e^2/h\) and \(\Delta G = 4~e^2/h\). In quantizing magnetic fields normal to the sample plane, we recover the four- fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.
language: eng
source:
identifier: DOI: 10.1021/acs.nanolett.7b04666
fulltext: fulltext_linktorsrc
url: Link


@attributes
ID862108735
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid2071814473
sourceidproquest
recordidTN_proquest2071814473
sourcesystemOther
pqid2071814473
display
typearticle
titleElectrostatically induced quantum point contact in bilayer graphene
creatorOverweg, Hiske ; Eggimann, Hannah ; Chen, Xi ; Slizovskiy, Sergey ; Eich, Marius ; Pisoni, Riccardo ; Lee, Yongjin ; Rickhaus, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Fal'Ko, Vladimir ; Ihn, Thomas ; Ensslin, Klaus
contributorEnsslin, Klaus (pacrepositoryorg)
ispartofarXiv.org, Jan 16, 2018
identifierDOI: 10.1021/acs.nanolett.7b04666
subjectMagnetic Fields ; Crossovers ; Graphene ; Current Carriers ; Point Contact ; Charge Density ; Counting ; Depletion ; Electronic Devices ; Resistance ; Bilayers ; Carrier Density
descriptionWe report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as \(R \sim 10~\)G\(\Omega\). This exceeds previously reported values of \(R =~\)10 - 100 k\(\Omega\).\cite{Zou2010,Yan2010,Zhu2016a} We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of \(\Delta G = 2~e^2/h\) and \(\Delta G = 4~e^2/h\). In quantizing magnetic fields normal to the sample plane, we recover the four- fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.
languageeng
source
version5
oafree_for_read
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
linktorsrc$$Uhttp://search.proquest.com/docview/2071814473/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Overweg, Hiske
1Eggimann, Hannah
2Chen, Xi
3Slizovskiy, Sergey
4Eich, Marius
5Pisoni, Riccardo
6Lee, Yongjin
7Rickhaus, Peter
8Watanabe, Kenji
9Taniguchi, Takashi
10Fal'Ko, Vladimir
11Ihn, Thomas
12Ensslin, Klaus
titleElectrostatically induced quantum point contact in bilayer graphene
descriptionWe report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as \(R \sim 10~\)G\(\Omega\). This exceeds previously reported values of \(R =~\)10 - 100 k\(\Omega\).\cite{Zou2010,Yan2010,Zhu2016a} We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of \(\Delta G = 2~e^2/h\) and \(\Delta G = 4~e^2/h\). In quantizing magnetic fields normal to the sample plane, we recover the four- fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.
subject
0Magnetic Fields
1Crossovers
2Graphene
3Current Carriers
4Point Contact
5Charge Density
6Counting
7Depletion
8Electronic Devices
9Resistance
10Bilayers
11Carrier Density
general
0English
1Cornell University Library, arXiv.org
210.1021/acs.nanolett.7b04666
3Engineering Database
4Publicly Available Content Database
5ProQuest Engineering Collection
6ProQuest Technology Collection
7ProQuest SciTech Collection
8Materials Science & Engineering Database
9ProQuest Central (new)
10ProQuest Central Korea
11SciTech Premium Collection
12Technology Collection
13ProQuest Central Essentials
14Engineering Collection (ProQuest)
sourceidproquest
recordidproquest2071814473
rsrctypearticle
creationdate2018
addtitlearXiv.org
searchscope
01007853
11008875
21008886
31009127
41009240
510000041
610000053
710000120
810000250
910000255
1010000256
1110000258
1210000260
1310000265
1410000268
1510000281
1610000348
1710000356
1810000360
19proquest
scope
01007853
11008875
21008886
31009127
41009240
510000041
610000053
710000120
810000250
910000255
1010000256
1110000258
1210000260
1310000265
1410000268
1510000281
1610000348
1710000356
1810000360
19proquest
lsr43
01007853true
11008875true
21008886true
31009127true
41009240true
510000041true
610000053true
710000120true
810000250true
910000255true
1010000256true
1110000258true
1210000260true
1310000265true
1410000268true
1510000281true
1610000348true
1710000356true
1810000360true
startdate20180116
enddate20180116
lsr30VSR-Enriched:[pqid, pages, issn, issue, vol, eissn]
sort
titleElectrostatically induced quantum point contact in bilayer graphene
authorOverweg, Hiske ; Eggimann, Hannah ; Chen, Xi ; Slizovskiy, Sergey ; Eich, Marius ; Pisoni, Riccardo ; Lee, Yongjin ; Rickhaus, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Fal'Ko, Vladimir ; Ihn, Thomas ; Ensslin, Klaus
creationdate20180116
lso0120180116
facets
frbrgroupid1997066222034499710
frbrtype5
newrecords20180917
languageeng
creationdate2018
topic
0Magnetic Fields
1Crossovers
2Graphene
3Current Carriers
4Point Contact
5Charge Density
6Counting
7Depletion
8Electronic Devices
9Resistance
10Bilayers
11Carrier Density
collection
0Engineering Database
1Publicly Available Content Database
2ProQuest Engineering Collection
3ProQuest Technology Collection
4ProQuest SciTech Collection
5Materials Science & Engineering Database
6ProQuest Central (new)
7ProQuest Central Korea
8SciTech Premium Collection
9Technology Collection
10ProQuest Central Essentials
11Engineering Collection (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Overweg, Hiske
1Eggimann, Hannah
2Chen, Xi
3Slizovskiy, Sergey
4Eich, Marius
5Pisoni, Riccardo
6Lee, Yongjin
7Rickhaus, Peter
8Watanabe, Kenji
9Taniguchi, Takashi
10Fal'Ko, Vladimir
11Ihn, Thomas
12Ensslin, Klaus
jtitlearXiv.org
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext_linktorsrc
addata
aulast
0Overweg
1Eggimann
2Chen
3Slizovskiy
4Eich
5Pisoni
6Lee
7Rickhaus
8Watanabe
9Taniguchi
10Fal'ko
11Ihn
12Ensslin
aufirst
0Hiske
1Hannah
2Xi
3Sergey
4Marius
5Riccardo
6Yongjin
7Peter
8Kenji
9Takashi
10Vladimir
11Thomas
12Klaus
au
0Overweg, Hiske
1Eggimann, Hannah
2Chen, Xi
3Slizovskiy, Sergey
4Eich, Marius
5Pisoni, Riccardo
6Lee, Yongjin
7Rickhaus, Peter
8Watanabe, Kenji
9Taniguchi, Takashi
10Fal'Ko, Vladimir
11Ihn, Thomas
12Ensslin, Klaus
atitleElectrostatically induced quantum point contact in bilayer graphene
jtitlearXiv.org
risdate20180116
formatjournal
genrearticle
ristypeJOUR
abstractWe report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as \(R \sim 10~\)G\(\Omega\). This exceeds previously reported values of \(R =~\)10 - 100 k\(\Omega\).\cite{Zou2010,Yan2010,Zhu2016a} We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of \(\Delta G = 2~e^2/h\) and \(\Delta G = 4~e^2/h\). In quantizing magnetic fields normal to the sample plane, we recover the four- fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.
copIthaca
pubCornell University Library, arXiv.org
doi10.1021/acs.nanolett.7b04666
urlhttp://search.proquest.com/docview/2071814473/
pages553-559
issue1
volume18
issn15306984
eissn15306992
oafree_for_read
date2018-01-16