schliessen

Filtern

 

Bibliotheken

Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2

Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to t... Full description

Journal Title: arXiv.org Jun 11, 2018
Main Author: Li, Zhipeng
Other Authors: Wang, Tianmeng , Lu, Zhengguang , Jin, Chenhao , Chen, Yanwen , Meng, Yuze , Lian, Zhen , Taniguchi, Takashi , Watanabe, Kenji , Zhang, Shengbai , Smirnov, Dmitry , Su-Fei, Shi
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: DOI: 10.1038/s41467-018-05863-5
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest2073382017
title: Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2
format: Article
creator:
  • Li, Zhipeng
  • Wang, Tianmeng
  • Lu, Zhengguang
  • Jin, Chenhao
  • Chen, Yanwen
  • Meng, Yuze
  • Lian, Zhen
  • Taniguchi, Takashi
  • Watanabe, Kenji
  • Zhang, Shengbai
  • Smirnov, Dmitry
  • Su-Fei, Shi
subjects:
  • Transition Metals
  • Encapsulation
  • Free Electrons
  • Optoelectronics
  • Trions
  • Photoluminescence
  • Excitons
ispartof: arXiv.org, Jun 11, 2018
description: Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN encapsulated single-layer WSe2. The biexciton state only exists in charge neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications.
language: eng
source:
identifier: DOI: 10.1038/s41467-018-05863-5
fulltext: fulltext_linktorsrc
url: Link


@attributes
ID701032288
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid2073382017
sourceidproquest
recordidTN_proquest2073382017
sourcesystemOther
pqid2073382017
display
typearticle
titleRevealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2
creatorLi, Zhipeng ; Wang, Tianmeng ; Lu, Zhengguang ; Jin, Chenhao ; Chen, Yanwen ; Meng, Yuze ; Lian, Zhen ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhang, Shengbai ; Smirnov, Dmitry ; Su-Fei, Shi
contributorSu-Fei, Shi (pacrepositoryorg)
ispartofarXiv.org, Jun 11, 2018
identifierDOI: 10.1038/s41467-018-05863-5
subjectTransition Metals ; Encapsulation ; Free Electrons ; Optoelectronics ; Trions ; Photoluminescence ; Excitons
descriptionStrong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN encapsulated single-layer WSe2. The biexciton state only exists in charge neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications.
languageeng
source
version8
oafree_for_read
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
linktorsrc$$Uhttp://search.proquest.com/docview/2073382017/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Li, Zhipeng
1Wang, Tianmeng
2Lu, Zhengguang
3Jin, Chenhao
4Chen, Yanwen
5Meng, Yuze
6Lian, Zhen
7Taniguchi, Takashi
8Watanabe, Kenji
9Zhang, Shengbai
10Smirnov, Dmitry
11Su-Fei, Shi
titleRevealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2
descriptionStrong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN encapsulated single-layer WSe2. The biexciton state only exists in charge neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications.
subject
0Transition Metals
1Encapsulation
2Free Electrons
3Optoelectronics
4Trions
5Photoluminescence
6Excitons
general
0English
1Cornell University Library, arXiv.org
210.1038/s41467-018-05863-5
3Engineering Database
4Publicly Available Content Database
5ProQuest Engineering Collection
6ProQuest Technology Collection
7ProQuest SciTech Collection
8Materials Science & Engineering Database
9ProQuest Central (new)
10ProQuest Central Korea
11SciTech Premium Collection
12Technology Collection
13ProQuest Central Essentials
14Engineering Collection (ProQuest)
sourceidproquest
recordidproquest2073382017
rsrctypearticle
creationdate2018
addtitlearXiv.org
searchscope
01007853
11008875
21008886
31009127
41009240
510000041
610000053
710000120
810000250
910000255
1010000256
1110000258
1210000260
1310000265
1410000268
1510000281
1610000348
1710000356
1810000360
19proquest
scope
01007853
11008875
21008886
31009127
41009240
510000041
610000053
710000120
810000250
910000255
1010000256
1110000258
1210000260
1310000265
1410000268
1510000281
1610000348
1710000356
1810000360
19proquest
lsr43
01007853true
11008875true
21008886true
31009127true
41009240true
510000041true
610000053true
710000120true
810000250true
910000255true
1010000256true
1110000258true
1210000260true
1310000265true
1410000268true
1510000281true
1610000348true
1710000356true
1810000360true
startdate20180611
enddate20180611
lsr30VSR-Enriched:[eissn, vol, orcidid, issue, issn, pages, pqid]
sort
titleRevealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2
authorLi, Zhipeng ; Wang, Tianmeng ; Lu, Zhengguang ; Jin, Chenhao ; Chen, Yanwen ; Meng, Yuze ; Lian, Zhen ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhang, Shengbai ; Smirnov, Dmitry ; Su-Fei, Shi
creationdate20180611
lso0120180611
facets
frbrgroupid4276482946051006141
frbrtype5
newrecords20180917
languageeng
creationdate2018
topic
0Transition Metals
1Encapsulation
2Free Electrons
3Optoelectronics
4Trions
5Photoluminescence
6Excitons
collection
0Engineering Database
1Publicly Available Content Database
2ProQuest Engineering Collection
3ProQuest Technology Collection
4ProQuest SciTech Collection
5Materials Science & Engineering Database
6ProQuest Central (new)
7ProQuest Central Korea
8SciTech Premium Collection
9Technology Collection
10ProQuest Central Essentials
11Engineering Collection (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Li, Zhipeng
1Wang, Tianmeng
2Lu, Zhengguang
3Jin, Chenhao
4Chen, Yanwen
5Meng, Yuze
6Lian, Zhen
7Taniguchi, Takashi
8Watanabe, Kenji
9Zhang, Shengbai
10Smirnov, Dmitry
11Su-Fei, Shi
jtitlearXiv.org
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext_linktorsrc
addata
aulast
0Li
1Wang
2Lu
3Jin
4Chen
5Meng
6Lian
7Taniguchi
8Watanabe
9Zhang
10Smirnov
11Su-Fei
aufirst
0Zhipeng
1Tianmeng
2Zhengguang
3Chenhao
4Yanwen
5Yuze
6Zhen
7Takashi
8Kenji
9Shengbai
10Dmitry
11Shi
au
0Li, Zhipeng
1Wang, Tianmeng
2Lu, Zhengguang
3Jin, Chenhao
4Chen, Yanwen
5Meng, Yuze
6Lian, Zhen
7Taniguchi, Takashi
8Watanabe, Kenji
9Zhang, Shengbai
10Smirnov, Dmitry
11Su-Fei, Shi
atitleRevealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2
jtitlearXiv.org
risdate20180611
formatjournal
genrearticle
ristypeJOUR
abstractStrong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN encapsulated single-layer WSe2. The biexciton state only exists in charge neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications.
copIthaca
pubCornell University Library, arXiv.org
doi10.1038/s41467-018-05863-5
urlhttp://search.proquest.com/docview/2073382017/
volume9
orcidid0000-0003-1115-1077
issue1
pages1-7
eissn20411723
issn20411723
oafree_for_read
date2018-06-11