schliessen

Filtern

 

Bibliotheken

A new two-stage multivariate quantile mapping method for bias correcting climate model outputs

Bias correction is an essential technique to correct climate model outputs for local or site-specific climate change impact studies. Most commonly used bias correction methods operate on a single variable, which ignores dependency among multiple variables. The misrepresentation of multivariable depe... Full description

Journal Title: Climate Dynamics Sep 2019, Vol.53(5-6), pp.3603-3623
Main Author: Guo, Qiang
Other Authors: Chen, Jie , Zhang, Xunchang , Shen, Mingxi , Chen, Hua , Guo, Shenglian
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 09307575 ; E-ISSN: 14320894 ; DOI: 10.1007/s00382-019-04729-w
Link: http://search.proquest.com/docview/2195734800/?pq-origsite=primo
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest2195734800
title: A new two-stage multivariate quantile mapping method for bias correcting climate model outputs
format: Article
creator:
  • Guo, Qiang
  • Chen, Jie
  • Zhang, Xunchang
  • Shen, Mingxi
  • Chen, Hua
  • Guo, Shenglian
subjects:
  • Climate Change
  • Global Temperatures
  • Environmental Assessment
  • Bias
  • Precipitation
  • Minimum Temperatures
  • Mathematical Models
  • Mapping
  • Climate Change
  • Distribution
  • Evaporation
  • Mean Temperatures
  • Potential Evaporation
  • Climate Change
  • Dependence
  • Correlation
  • Computer Simulation
  • Bias
  • Climate Change
  • Evaporation
ispartof: Climate Dynamics, Sep 2019, Vol.53(5-6), pp.3603-3623
description: Bias correction is an essential technique to correct climate model outputs for local or site-specific climate change impact studies. Most commonly used bias correction methods operate on a single variable, which ignores dependency among multiple variables. The misrepresentation of multivariable dependence...
language: eng
source:
identifier: ISSN: 09307575 ; E-ISSN: 14320894 ; DOI: 10.1007/s00382-019-04729-w
fulltext: fulltext
issn:
  • 09307575
  • 0930-7575
  • 14320894
  • 1432-0894
url: Link


@attributes
ID840681936
RANK0.06999999
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid2195734800
sourceidproquest
recordidTN_proquest2195734800
sourcesystemPC
pqid2195734800
galeid597416528
display
typearticle
titleA new two-stage multivariate quantile mapping method for bias correcting climate model outputs
creatorGuo, Qiang ; Chen, Jie ; Zhang, Xunchang ; Shen, Mingxi ; Chen, Hua ; Guo, Shenglian
ispartofClimate Dynamics, Sep 2019, Vol.53(5-6), pp.3603-3623
identifier
subjectClimate Change ; Global Temperatures ; Environmental Assessment ; Bias ; Precipitation ; Minimum Temperatures ; Mathematical Models ; Mapping ; Climate Change ; Distribution ; Evaporation ; Mean Temperatures ; Potential Evaporation ; Climate Change ; Dependence ; Correlation ; Computer Simulation ; Bias ; Climate Change ; Evaporation
descriptionBias correction is an essential technique to correct climate model outputs for local or site-specific climate change impact studies. Most commonly used bias correction methods operate on a single variable, which ignores dependency among multiple variables. The misrepresentation of multivariable dependence...
languageeng
source
version3
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
backlink$$Uhttp://search.proquest.com/docview/2195734800/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Guo, Qiang
1Chen, Jie
2Zhang, Xunchang
3Shen, Mingxi
4Chen, Hua
5Guo, Shenglian
titleA new two-stage multivariate quantile mapping method for bias correcting climate model outputs
descriptionBias correction is an essential technique to correct climate model outputs for local or site-specific climate change impact studies. Most commonly used bias correction methods operate on a single variable, which ignores dependency among multiple variables. The misrepresentation of multivariable dependence...
subject
0Climate Change
1Global Temperatures
2Environmental Assessment
3Bias
4Precipitation
5Minimum Temperatures
6Mathematical Models
7Mapping
8Distribution
9Evaporation
10Mean Temperatures
11Potential Evaporation
12Dependence
13Correlation
14Computer Simulation
15Bias...
16Bias correction
17Inter-variable correlation
18Statistical downscaling
19Climate change
20Global climate model
general
0English
1Springer Nature B.V.
210.1007/s00382-019-04729-w
3ProQuest Science Journals
4Science Database (Alumni edition)
5ProQuest Military Collection
6Military Database (Alumni edition)
7Water Resources Abstracts
8Oceanic Abstracts
9Environmental Science Database (ProQuest)
10Earth, Atmospheric & Aquatic Science Database (ProQuest)
11ASFA: Aquatic Sciences and Fisheries Abstracts
12ProQuest Aquatic Science Collection
13ProQuest Atmospheric Science Collection
14ProQuest Central
15ProQuest Earth Science Collection
16ProQuest Environmental Science Collection
17ProQuest Natural Science Collection
18ProQuest SciTech Collection
19Agricultural & Environmental Science Database
20Earth, Atmospheric & Aquatic Science Database
21Natural Science Collection
22ProQuest Central (new)
23ProQuest Central K-12
24ProQuest Central Korea
25SciTech Premium Collection
26ProQuest Central Essentials
27ProQuest One Academic
28Environmental Science Index (ProQuest)
29Environmental Science Collection (ProQuest)
sourceidproquest
recordidproquest2195734800
issn
009307575
10930-7575
214320894
31432-0894
rsrctypearticle
creationdate2019
addtitleClimate Dynamics
searchscope
01000283
11006072
21006765
31007156
41007296
51007427
61007492
71007529
81007551
91007844
101007849
111007945
121008886
131009127
141009714
151009715
1610000003
1710000006
1810000032
1910000036
2010000037
2110000039
2210000040
2310000043
2410000050
2510000118
2610000120
2710000164
2810000197
2910000198
3010000200
3110000202
3210000209
3310000217
3410000234
3510000244
3610000253
3710000255
3810000256
3910000257
4010000258
4110000260
4210000268
4310000281
4410000348
4510000349
4610000354
4710000360
48proquest
scope
01000283
11006072
21006765
31007156
41007296
51007427
61007492
71007529
81007551
91007844
101007849
111007945
121008886
131009127
141009714
151009715
1610000003
1710000006
1810000032
1910000036
2010000037
2110000039
2210000040
2310000043
2410000050
2510000118
2610000120
2710000164
2810000197
2910000198
3010000200
3110000202
3210000209
3310000217
3410000234
3510000244
3610000253
3710000255
3810000256
3910000257
4010000258
4110000260
4210000268
4310000281
4410000348
4510000349
4610000354
4710000360
48proquest
lsr43
01000283false
11006072false
21006765false
31007156false
41007296false
51007427false
61007492false
71007529false
81007551false
91007844false
101007849false
111007945false
121008886false
131009127false
141009714false
151009715false
1610000003false
1710000006false
1810000032false
1910000036false
2010000037false
2110000039false
2210000040false
2310000043false
2410000050false
2510000118false
2610000120false
2710000164false
2810000197false
2910000198false
3010000200false
3110000202false
3210000209false
3310000217false
3410000234false
3510000244false
3610000253false
3710000255false
3810000256false
3910000257false
4010000258false
4110000260false
4210000268false
4310000281false
4410000348false
4510000349false
4610000354false
4710000360false
startdate20190901
enddate20190901
citationpf 3603 pt 3623 vol 53 issue 5-6
lsr30VSR-Enriched:[orcidid, galeid, pqid]
sort
titleA new two-stage multivariate quantile mapping method for bias correcting climate model outputs
authorGuo, Qiang ; Chen, Jie ; Zhang, Xunchang ; Shen, Mingxi ; Chen, Hua ; Guo, Shenglian
creationdate20190901
lso0120190901
facets
frbrgroupid7512467594712063342
frbrtype5
newrecords20190410
languageeng
creationdate2019
topic
0Climate Change
1Global Temperatures
2Environmental Assessment
3Bias
4Precipitation
5Minimum Temperatures
6Mathematical Models
7Mapping
8Distribution
9Evaporation
10Mean Temperatures
11Potential Evaporation
12Dependence
13Correlation
14Computer Simulation
15Bias...
collection
0ProQuest Science Journals
1Science Database (Alumni edition)
2ProQuest Military Collection
3Military Database (Alumni edition)
4Water Resources Abstracts
5Oceanic Abstracts
6Environmental Science Database (ProQuest)
7Earth, Atmospheric & Aquatic Science Database (ProQuest)
8ASFA: Aquatic Sciences and Fisheries Abstracts
9ProQuest Aquatic Science Collection
10ProQuest Atmospheric Science Collection
11ProQuest Central
12ProQuest Earth Science Collection
13ProQuest Environmental Science Collection
14ProQuest Natural Science Collection
15ProQuest SciTech Collection
16Agricultural & Environmental Science Database
17Earth, Atmospheric & Aquatic Science Database
18Natural Science Collection
19ProQuest Central (new)
20ProQuest Central K-12
21ProQuest Central Korea
22SciTech Premium Collection
23ProQuest Central Essentials
24ProQuest One Academic
25Environmental Science Index (ProQuest)
26Environmental Science Collection (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Guo, Qiang
1Chen, Jie
2Zhang, Xunchang
3Shen, Mingxi
4Chen, Hua
5Guo, Shenglian
jtitleClimate Dynamics
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Guo
1Chen
2Zhang
3Shen
aufirst
0Qiang
1Jie
2Xunchang
3Mingxi
4Hua
5Shenglian
au
0Guo, Qiang
1Chen, Jie
2Zhang, Xunchang
3Shen, Mingxi
4Chen, Hua
5Guo, Shenglian
atitleA new two-stage multivariate quantile mapping method for bias correcting climate model outputs
jtitleClimate Dynamics
risdate20190901
volume53
issue5-6
spage3603
epage3623
pages3603-3623
issn09307575
eissn14320894
formatjournal
genrearticle
ristypeJOUR
abstractBias correction is an essential technique to correct climate model outputs for local or site-specific climate change impact studies. Most commonly used bias correction methods operate on a single variable, which ignores dependency among multiple variables. The misrepresentation of multivariable dependence...
copHeidelberg
pubSpringer Nature B.V.
doi10.1007/s00382-019-04729-w
urlhttp://search.proquest.com/docview/2195734800/
orcididhttp://orcid.org/0000-0001-8260-3160
date2019-09-01