schliessen

Filtern

 

Bibliotheken

Observation of the dynamical Casimir effect in a superconducting circuit

One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had... Full description

Journal Title: Nature Nov 17, 2011, Vol.479(7373), pp.376-9
Main Author: Wilson, C
Other Authors: Johansson, G , Pourkabirian, A , Simoen, M , Johansson, J , Duty, T , Nori, F , Delsing, P
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 00280836 ; E-ISSN: 14764687
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: proquest908416777
title: Observation of the dynamical Casimir effect in a superconducting circuit
format: Article
creator:
  • Wilson, C
  • Johansson, G
  • Pourkabirian, A
  • Simoen, M
  • Johansson, J
  • Duty, T
  • Nori, F
  • Delsing, P
subjects:
  • Studies
  • Expected Values
  • Noise
  • Mirrors
ispartof: Nature, Nov 17, 2011, Vol.479(7373), pp.376-9
description: One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences-for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process. [PUBLICATION ]
language: eng
source:
identifier: ISSN: 00280836 ; E-ISSN: 14764687
fulltext: fulltext
issn:
  • 00280836
  • 0028-0836
  • 14764687
  • 1476-4687
url: Link


@attributes
ID456108584
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid908416777
sourceidproquest
recordidTN_proquest908416777
sourcesystemOther
pqid908416777
galeid273421000
display
typearticle
titleObservation of the dynamical Casimir effect in a superconducting circuit
creatorWilson, C ; Johansson, G ; Pourkabirian, A ; Simoen, M ; Johansson, J ; Duty, T ; Nori, F ; Delsing, P
ispartofNature, Nov 17, 2011, Vol.479(7373), pp.376-9
identifierISSN: 00280836 ; E-ISSN: 14764687
subjectStudies ; Expected Values ; Noise ; Mirrors
descriptionOne of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences-for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process. [PUBLICATION ]
languageeng
source
version12
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
linktorsrc$$Uhttp://search.proquest.com/docview/908416777/?pq-origsite=primo$$EView_record_in_ProQuest_(subscribers_only)
search
creatorcontrib
0Wilson, C
1Johansson, G
2Pourkabirian, A
3Simoen, M
4Johansson, J
5Duty, T
6Nori, F
7Delsing, P
titleObservation of the dynamical Casimir effect in a superconducting circuit
descriptionOne of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences-for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process. [PUBLICATION ]
subject
0Studies
1Expected Values
2Noise
3Mirrors
general
0English
1Nature Publishing Group
2Medical Database
3ProQuest Science Journals
4STEM Database (ProQuest)
5Health & Medical Collection (Alumni edition)
6Medical Database (Alumni edition)
7Nursing & Allied Health Database (Alumni edition)
8Psychology Database (Alumni edition)
9Science Database (Alumni edition)
10ProQuest Pharma Collection
11Health & Medical Collection
12Psychology Database
13Nursing & Allied Health Database
14ProQuest Biology Journals
15ProQuest Agriculture Journals
16Ecology Abstracts
17Entomology Abstracts
18Animal Behavior Abstracts
19Neurosciences Abstracts
20ProQuest Public Health
21Aquatic Science Journals
22Materials Science Database
23Advanced Technologies & Aerospace Database
24Engineering Database
25Biological Science Database
26Research Library China
27Environmental Science Database (ProQuest)
28Earth, Atmospheric & Aquatic Science Database (ProQuest)
29Engineering Research Database
30Technology Research Database
31ProQuest Nursing & Allied Health Source
32ProQuest Research Library
33Environment Abstracts
34ProQuest Agricultural Science Collection
35ProQuest Aquatic Science Collection
36ProQuest Atmospheric Science Collection
37ProQuest Biological Science Collection
38ProQuest Central
39ProQuest Earth Science Collection
40ProQuest Engineering Collection
41ProQuest Environmental Science Collection
42ProQuest Advanced Technologies & Aerospace Collection
43ProQuest Hospital Collection
44ProQuest Materials Science Collection
45ProQuest Natural Science Collection
46ProQuest Technology Collection
47Research Library (Alumni edition)
48Hospital Premium Collection (Alumni edition)
49ProQuest SciTech Collection
50ProQuest Health & Medical Complete
51ProQuest Medical Library
52ProQuest Psychology Journals
53Agricultural & Environmental Science Database
54Earth, Atmospheric & Aquatic Science Database
55Materials Science & Engineering Database
56Natural Science Collection
57ProQuest Central (new)
58ProQuest Central K-12
59ProQuest Central Korea
60Research Library Prep
61SciTech Premium Collection
62Technology Collection
63Health Research Premium Collection
64Health Research Premium Collection (Alumni edition)
65ProQuest Central Essentials
66eLibrary
67ProQuest Central China
68ProQuest One Academic
69Environmental Science Index (ProQuest)
70Biological Science Index (ProQuest)
71Environmental Science Collection (ProQuest)
72Materials Science Collection (ProQuest)
73Engineering Collection (ProQuest)
sourceidproquest
recordidproquest908416777
issn
000280836
10028-0836
214764687
31476-4687
rsrctypearticle
creationdate2011
addtitleNature
searchscope
01000273
11000283
21005631
31005660
41005662
51006072
61006385
71006454
81006759
91006761
101006762
111006763
121006764
131006765
141006772
151006815
161006993
171007015
181007067
191007106
201007107
211007108
221007160
231007385
241007396
251007403
261007420
271007431
281007444
291007447
301007490
311007515
321007529
331007531
341007536
351007538
361007552
371007617
381007844
391007845
401007849
411007851
421007852
431007853
441007856
451007902
461007918
471007945
481008008
491009127
501009191
511009384
521009714
531009715
5410000002
5510000004
5610000005
5710000006
5810000013
5910000015
6010000020
6110000022
6210000025
6310000029
6410000032
6510000034
6610000035
6710000036
6810000037
6910000038
7010000039
7110000040
7210000041
7310000043
7410000045
7510000047
7610000049
7710000050
7810000053
7910000064
8010000117
8110000118
8210000119
8310000120
8410000155
8510000156
8610000157
8710000158
8810000160
8910000161
9010000164
9110000198
9210000200
9310000202
9410000209
9510000217
9610000233
9710000234
9810000238
9910000244
10010000250
10110000253
10210000255
10310000256
10410000257
10510000258
10610000259
10710000260
10810000265
10910000268
11010000270
11110000271
11210000281
11310000293
11410000300
11510000302
11610000348
11710000349
11810000350
11910000354
12010000355
12110000356
12210000360
123proquest
scope
01000273
11000283
21005631
31005660
41005662
51006072
61006385
71006454
81006759
91006761
101006762
111006763
121006764
131006765
141006772
151006815
161006993
171007015
181007067
191007106
201007107
211007108
221007160
231007385
241007396
251007403
261007420
271007431
281007444
291007447
301007490
311007515
321007529
331007531
341007536
351007538
361007552
371007617
381007844
391007845
401007849
411007851
421007852
431007853
441007856
451007902
461007918
471007945
481008008
491009127
501009191
511009384
521009714
531009715
5410000002
5510000004
5610000005
5710000006
5810000013
5910000015
6010000020
6110000022
6210000025
6310000029
6410000032
6510000034
6610000035
6710000036
6810000037
6910000038
7010000039
7110000040
7210000041
7310000043
7410000045
7510000047
7610000049
7710000050
7810000053
7910000064
8010000117
8110000118
8210000119
8310000120
8410000155
8510000156
8610000157
8710000158
8810000160
8910000161
9010000164
9110000198
9210000200
9310000202
9410000209
9510000217
9610000233
9710000234
9810000238
9910000244
100...
lsr43
01000273true
11000283true
21005631true
31005660true
41005662true
51006072true
61006385true
71006454true
81006759true
91006761true
101006762true
111006763true
121006764true
131006765true
141006772true
151006815true
161006993true
171007015true
181007067true
191007106true
201007107true
211007108true
221007160true
231007385false
241007396false
251007403false
261007420false
271007431false
281007444false
291007447false
301007490false
311007515false
321007529false
331007531false
341007536false
351007538false
361007552false
371007617true
381007844true
391007845true
401007849true
411007851true
421007852true
431007853true
441007856true
451007902true
461007918false
471007945true
481008008true
491009127true
501009191true
511009384true
521009714true
531009715true
5410000002false
5510000004false
5610000005false
5710000006false
5810000013false
5910000015false
6010000020true
6110000022false
6210000025true
6310000029false
6410000032false
6510000034true
6610000035true
6710000036true
6810000037true
6910000038true
7010000039true
7110000040true
7210000041true
7310000043true
7410000045true
7510000047true
7610000049true
7710000050true
7810000053true
7910000064true
8010000117true
8110000118true
8210000119true
8310000120true
8410000155true
8510000156true
8610000157true
8710000158true
8810000160true
8910000161true
9010000164true
9110000198false
9210000200false
9310000202false
9410000209false
9510000217false
9610000233true
9710000234true
9810000238true
9910000244true
100...
startdate20111117
enddate20111117
citationpf 376 pt 9 vol 479 issue 7373
lsr30VSR-Enriched:[doi, pqid, galeid, pages]
sort
titleObservation of the dynamical Casimir effect in a superconducting circuit
authorWilson, C ; Johansson, G ; Pourkabirian, A ; Simoen, M ; Johansson, J ; Duty, T ; Nori, F ; Delsing, P
creationdate20111117
lso0120111117
facets
frbrgroupid6986921305883326643
frbrtype5
newrecords20180124
languageeng
creationdate2011
topic
0Studies
1Expected Values
2Noise
3Mirrors
collection
0Medical Database
1ProQuest Science Journals
2STEM Database (ProQuest)
3Health & Medical Collection (Alumni edition)
4Medical Database (Alumni edition)
5Nursing & Allied Health Database (Alumni edition)
6Psychology Database (Alumni edition)
7Science Database (Alumni edition)
8ProQuest Pharma Collection
9Health & Medical Collection
10Psychology Database
11Nursing & Allied Health Database
12ProQuest Biology Journals
13ProQuest Agriculture Journals
14Ecology Abstracts
15Entomology Abstracts
16Animal Behavior Abstracts
17Neurosciences Abstracts
18ProQuest Public Health
19Aquatic Science Journals
20Materials Science Database
21Advanced Technologies & Aerospace Database
22Engineering Database
23Biological Science Database
24Research Library China
25Environmental Science Database (ProQuest)
26Earth, Atmospheric & Aquatic Science Database (ProQuest)
27Engineering Research Database
28Technology Research Database
29ProQuest Nursing & Allied Health Source
30ProQuest Research Library
31Environment Abstracts
32ProQuest Agricultural Science Collection
33ProQuest Aquatic Science Collection
34ProQuest Atmospheric Science Collection
35ProQuest Biological Science Collection
36ProQuest Central
37ProQuest Earth Science Collection
38ProQuest Engineering Collection
39ProQuest Environmental Science Collection
40ProQuest Advanced Technologies & Aerospace Collection
41ProQuest Hospital Collection
42ProQuest Materials Science Collection
43ProQuest Natural Science Collection
44ProQuest Technology Collection
45Research Library (Alumni edition)
46Hospital Premium Collection (Alumni edition)
47ProQuest SciTech Collection
48ProQuest Health & Medical Complete
49ProQuest Medical Library
50ProQuest Psychology Journals
51Agricultural & Environmental Science Database
52Earth, Atmospheric & Aquatic Science Database
53Materials Science & Engineering Database
54Natural Science Collection
55ProQuest Central (new)
56ProQuest Central K-12
57ProQuest Central Korea
58Research Library Prep
59SciTech Premium Collection
60Technology Collection
61Health Research Premium Collection
62Health Research Premium Collection (Alumni edition)
63ProQuest Central Essentials
64eLibrary
65ProQuest Central China
66ProQuest One Academic
67Environmental Science Index (ProQuest)
68Biological Science Index (ProQuest)
69Environmental Science Collection (ProQuest)
70Materials Science Collection (ProQuest)
71Engineering Collection (ProQuest)
prefilterarticles
rsrctypearticles
creatorcontrib
0Wilson, C
1Johansson, G
2Pourkabirian, A
3Simoen, M
4Johansson, J
5Duty, T
6Nori, F
7Delsing, P
jtitleNature
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Wilson
1Johansson
2Pourkabirian
3Simoen
4Duty
5Nori
6Delsing
aufirst
0C
1G
2A
3M
4J
5T
6F
7P
auinit1
0C.
1G.
2A.
3M.
4J.
5T.
6F.
7P.
au
0Wilson, C
1Johansson, G
2Pourkabirian, A
3Simoen, M
4Johansson, J
5Duty, T
6Nori, F
7Delsing, P
atitleObservation of the dynamical Casimir effect in a superconducting circuit
jtitleNature
risdate20111117
volume479
issue7373
spage376
epage9
pages376-379
issn00280836
eissn14764687
formatjournal
genrearticle
ristypeJOUR
abstractOne of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences-for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process. [PUBLICATION ABSTRACT]
copLondon
pubNature Publishing Group
urlhttp://search.proquest.com/docview/908416777/
doi10.1038/nature10561
date2011-11-17