schliessen

Filtern

 

Bibliotheken

A note on fractional integral operators on Herz spaces with variable exponent

In this note, we prove that the fractional integral operators from Herz spaces with variable exponent K ˙ p ( ⋅ ) , q α $\dot{K}^{\alpha}_{p(\cdot), q}$ to Lipschitz-type spaces are bounded provided p ( ⋅ ) $p(\cdot)$ is locally log-Hölder continuous and log-Hölder continuous at infinity.

Journal Title: Journal of Inequalities and Applications 2016, Vol.2016(1), pp.1-11
Main Author: Qu, Meng
Other Authors: Wang, Jie
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: E-ISSN: 1029-242X ; DOI: 10.1186/s13660-015-0949-0
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: springer_jour10.1186/s13660-015-0949-0
title: A note on fractional integral operators on Herz spaces with variable exponent
format: Article
creator:
  • Qu, Meng
  • Wang, Jie
subjects:
  • Herz spaces
  • Lipschitz spaces
  • fractional integral
  • variable exponent
ispartof: Journal of Inequalities and Applications, 2016, Vol.2016(1), pp.1-11
description: In this note, we prove that the fractional integral operators from Herz spaces with variable exponent K ˙ p ( ⋅ ) , q α $\dot{K}^{\alpha}_{p(\cdot), q}$ to Lipschitz-type spaces are bounded provided p ( ⋅ ) $p(\cdot)$ is locally log-Hölder continuous and log-Hölder continuous at infinity.
language: eng
source:
identifier: E-ISSN: 1029-242X ; DOI: 10.1186/s13660-015-0949-0
fulltext: fulltext_linktorsrc
issn:
  • 1029-242X
  • 1029242X
url: Link


@attributes
ID1118533377
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid10.1186/s13660-015-0949-0
sourceidspringer_jour
recordidTN_springer_jour10.1186/s13660-015-0949-0
sourcesystemPC
pqid1753284991
display
typearticle
titleA note on fractional integral operators on Herz spaces with variable exponent
creatorQu, Meng ; Wang, Jie
ispartofJournal of Inequalities and Applications, 2016, Vol.2016(1), pp.1-11
identifierE-ISSN: 1029-242X ; DOI: 10.1186/s13660-015-0949-0
subjectHerz spaces ; Lipschitz spaces ; fractional integral ; variable exponent
descriptionIn this note, we prove that the fractional integral operators from Herz spaces with variable exponent K ˙ p ( ⋅ ) , q α $\dot{K}^{\alpha}_{p(\cdot), q}$ to Lipschitz-type spaces are bounded provided p ( ⋅ ) $p(\cdot)$ is locally log-Hölder continuous and log-Hölder continuous at infinity.
languageeng
source
version5
oafree_for_read
lds50peer_reviewed
links
openurl$$Topenurl_article
linktorsrc$$Uhttp://dx.doi.org/10.1186/s13660-015-0949-0$$EView_full_text_in_Springer
openurlfulltext$$Topenurlfull_article
search
creatorcontrib
0Qu, Meng
1Wang, Jie
titleA note on fractional integral operators on Herz spaces with variable exponent
descriptionIn this note, we prove that the fractional integral operators from Herz spaces with variable exponent K ˙ p ( ⋅ ) , q α $\dot{K}^{\alpha}_{p(\cdot), q}$ to Lipschitz-type spaces are bounded provided p ( ⋅ ) $p(\cdot)$ is locally log-Hölder continuous and log-Hölder continuous at infinity.
subject
0Herz spaces
1Lipschitz spaces
2fractional integral
3variable exponent
general
010.1186/s13660-015-0949-0
1English
2Springer Science & Business Media B.V.
3SpringerLink Open Access
sourceidspringer_jour
recordidspringer_jour10.1186/s13660-015-0949-0
issn
01029-242X
11029242X
rsrctypearticle
creationdate2016
addtitle
0Journal of Inequalities and Applications
1J Inequal Appl
searchscopespringer_free
scopespringer_free
lsr30VSR-Enriched:[pages, issn, pqid]
sort
titleA note on fractional integral operators on Herz spaces with variable exponent
authorQu, Meng ; Wang, Jie
creationdate20161200
facets
frbrgroupid7645532595721016762
frbrtype5
languageeng
creationdate2016
topic
0Herz Spaces
1Lipschitz Spaces
2Fractional Integral
3Variable Exponent
collectionSpringerLink Open Access
prefilterarticles
rsrctypearticles
creatorcontrib
0Qu, Meng
1Wang, Jie
jtitleJournal Of Inequalities And Applications
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext_linktorsrc
addata
aulast
0Qu
1Wang
aufirst
0Meng
1Jie
au
0Qu, Meng
1Wang, Jie
atitleA note on fractional integral operators on Herz spaces with variable exponent
jtitleJournal of Inequalities and Applications
stitleJ Inequal Appl
risdate201612
volume2016
issue1
spage1
epage11
eissn1029-242X
genrearticle
ristypeJOUR
abstractIn this note, we prove that the fractional integral operators from Herz spaces with variable exponent K ˙ p ( ⋅ ) , q α $\dot{K}^{\alpha}_{p(\cdot), q}$ to Lipschitz-type spaces are bounded provided p ( ⋅ ) $p(\cdot)$ is locally log-Hölder continuous and log-Hölder continuous at infinity.
copCham
pubSpringer International Publishing
doi10.1186/s13660-015-0949-0
pages1-11
issn10255834
oafree_for_read
date2016-12