schliessen

Filtern

 

Bibliotheken

Engineering the Electrical Conductivity of Lamellar Silver‐Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution

Precisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag‐CoSe nanobelts with controllable conductivity. The electri... Full description

Journal Title: Angewandte Chemie 02 January 2017, Vol.129(1), pp.334-338
Main Author: Zhao, Xu
Other Authors: Zhang, Hantao , Yan, Yu , Cao, Jinhua , Li, Xingqi , Zhou, Shiming , Peng, Zhenmeng , Zeng, Jie
Format: Electronic Article Electronic Article
Language: English
Subjects:
ID: ISSN: 0044-8249 ; E-ISSN: 1521-3757 ; DOI: 10.1002/ange.201609080
Zum Text:
SendSend as email Add to Book BagAdd to Book Bag
Staff View
recordid: wj10.1002/ange.201609080
title: Engineering the Electrical Conductivity of Lamellar Silver‐Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution
format: Article
creator:
  • Zhao, Xu
  • Zhang, Hantao
  • Yan, Yu
  • Cao, Jinhua
  • Li, Xingqi
  • Zhou, Shiming
  • Peng, Zhenmeng
  • Zeng, Jie
subjects:
  • Elektrische Leitfähigkeit
  • Elektrokatalyse
  • Kationenaustauschreaktion
  • Nanostrukturen
  • Sauerstoffentwicklung
ispartof: Angewandte Chemie, 02 January 2017, Vol.129(1), pp.334-338
description: Precisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag‐CoSe nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag‐CoSe nanobelts. Relative to the CoSe nanobelts, the as‐prepared Ag‐CoSe nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities. : Mit Silberkationen dotierte Cobalt(II)‐selenid‐Nanostrukturen wurden synthetisiert und auf ihre elektrokatalytischen Eigenschaften in der Sauerstoffentwicklungsreaktion untersucht. Sie erreichen eine Stromdichte von >22 mA cm bei 0.35 V Überspannung.
language: eng
source:
identifier: ISSN: 0044-8249 ; E-ISSN: 1521-3757 ; DOI: 10.1002/ange.201609080
fulltext: fulltext
issn:
  • 0044-8249
  • 00448249
  • 1521-3757
  • 15213757
url: Link


@attributes
ID310205622
RANK0.07
NO1
SEARCH_ENGINEprimo_central_multiple_fe
SEARCH_ENGINE_TYPEPrimo Central Search Engine
LOCALfalse
PrimoNMBib
record
control
sourcerecordid10.1002/ange.201609080
sourceidwj
recordidTN_wj10.1002/ange.201609080
sourcesystemOther
pqid1880010384
galeid475209937
display
typearticle
titleEngineering the Electrical Conductivity of Lamellar Silver‐Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution
creatorZhao, Xu ; Zhang, Hantao ; Yan, Yu ; Cao, Jinhua ; Li, Xingqi ; Zhou, Shiming ; Peng, Zhenmeng ; Zeng, Jie
ispartofAngewandte Chemie, 02 January 2017, Vol.129(1), pp.334-338
identifier
subjectElektrische Leitfähigkeit ; Elektrokatalyse ; Kationenaustauschreaktion ; Nanostrukturen ; Sauerstoffentwicklung
descriptionPrecisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag‐CoSe nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag‐CoSe nanobelts. Relative to the CoSe nanobelts, the as‐prepared Ag‐CoSe nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities. : Mit Silberkationen dotierte Cobalt(II)‐selenid‐Nanostrukturen wurden synthetisiert und auf ihre elektrokatalytischen Eigenschaften in der Sauerstoffentwicklungsreaktion untersucht. Sie erreichen eine Stromdichte von >22 mA cm bei 0.35 V Überspannung.
languageeng
source
version6
lds50peer_reviewed
links
openurl$$Topenurl_article
openurlfulltext$$Topenurlfull_article
search
creatorcontrib
0Zhao, Xu
1Zhang, Hantao
2Yan, Yu
3Cao, Jinhua
4Li, Xingqi
5Zhou, Shiming
6Peng, Zhenmeng
7Zeng, Jie
titleEngineering the Electrical Conductivity of Lamellar Silver‐Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution
descriptionPrecisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag‐CoSe nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag‐CoSe nanobelts. Relative to the CoSe nanobelts, the as‐prepared Ag‐CoSe nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities. : Mit Silberkationen dotierte Cobalt(II)‐selenid‐Nanostrukturen wurden synthetisiert und auf ihre elektrokatalytischen Eigenschaften in der Sauerstoffentwicklungsreaktion untersucht. Sie erreichen eine Stromdichte von >22 mA cm bei 0.35 V Überspannung.
subject
0Elektrische Leitfähigkeit
1Elektrokatalyse
2Kationenaustauschreaktion
3Nanostrukturen
4Sauerstoffentwicklung
general
0English
110.1002/ange.201609080
2Wiley Online Library
sourceidwj
recordidwj10.1002/ange.201609080
issn
00044-8249
100448249
21521-3757
315213757
rsrctypearticle
creationdate2017
addtitle
0Angewandte Chemie
1Angew. Chem.
searchscope
0wj
1wiley
scope
0wj
1wiley
lsr30VSR-Enriched:[pages, pqid, galeid]
sort
titleEngineering the Electrical Conductivity of Lamellar Silver‐Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution
authorZhao, Xu ; Zhang, Hantao ; Yan, Yu ; Cao, Jinhua ; Li, Xingqi ; Zhou, Shiming ; Peng, Zhenmeng ; Zeng, Jie
creationdate20170102
facets
frbrgroupid-62350612470092343
frbrtype5
newrecords20170103
languageeng
creationdate2017
topic
0Elektrische Leitfähigkeit
1Elektrokatalyse
2Kationenaustauschreaktion
3Nanostrukturen
4Sauerstoffentwicklung
collectionWiley Online Library
prefilterarticles
rsrctypearticles
creatorcontrib
0Zhao, Xu
1Zhang, Hantao
2Yan, Yu
3Cao, Jinhua
4Li, Xingqi
5Zhou, Shiming
6Peng, Zhenmeng
7Zeng, Jie
jtitleAngewandte Chemie
toplevelpeer_reviewed
delivery
delcategoryRemote Search Resource
fulltextfulltext
addata
aulast
0Zhao
1Zhang
2Yan
3Cao
4Li
5Zhou
6Peng
7Zeng
aufirst
0Xu
1Hantao
2Yu
3Jinhua
4Xingqi
5Shiming
6Zhenmeng
7Jie
au
0Zhao, Xu
1Zhang, Hantao
2Yan, Yu
3Cao, Jinhua
4Li, Xingqi
5Zhou, Shiming
6Peng, Zhenmeng
7Zeng, Jie
atitleEngineering the Electrical Conductivity of Lamellar Silver‐Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution
jtitleAngewandte Chemie
risdate20170102
volume129
issue1
spage334
epage338
issn0044-8249
eissn1521-3757
genrearticle
ristypeJOUR
abstractPrecisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag‐CoSe nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag‐CoSe nanobelts. Relative to the CoSe nanobelts, the as‐prepared Ag‐CoSe nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities. : Mit Silberkationen dotierte Cobalt(II)‐selenid‐Nanostrukturen wurden synthetisiert und auf ihre elektrokatalytischen Eigenschaften in der Sauerstoffentwicklungsreaktion untersucht. Sie erreichen eine Stromdichte von >22 mA cm bei 0.35 V Überspannung.
doi10.1002/ange.201609080
pages334-338
date2017-01-02