schliessen

Filtern

 

Bibliotheken

Spektraltheorie gewöhnlicher linearer Differentialoperatoren vierter Ordnung / Otto Abels

In this thesis the spectral properties of differential operators generated by the formally self-adjoint differential expression are investigated. The main tools to be used are the theory of asymptotic integration and the Titchmarsh--Weyl M-matrix. Subject to certain regularity conditions on the coef... Full description

PPN (Catalogue-ID): 337478287
Personen: Abels, Otto [VerfasserIn]
Format: eBook eBook
Language: German
Published: 2001
Hochschule: Osnabrück, Univ., Diss., 2001
Basisklassifikation: 31.46
Subjects:

Linearer gewöhnlicher Differentialoperator / Selbstadjungierter Operator / Ordnung 4 / Asymptotische Integration / Titchmarsh-Weyl-Theorie / M-Matrix

Formangabe: Hochschulschrift
Physical Description: Online-Ressource (PostScript-Datei: 98 S., 222,72 kB)

Similar Items

Vorhandene Hefte/Bände

more (+)

Informationen zur Verfügbarkeit werden geladen

Staff View
LEADER 05321cam a2200985 4500
001 337478287
003 DE-627
005 20190310005100.0
007 cr uuu---uuuuu
008 011129s2001 xx |||||om 00| ||ger c
015 |a 01,H12,0398  |2 dnb 
016 7 |a 962853291  |2 DE-101 
024 7 |a urn:nbn:de:gbv:700-2001072513  |2 urn 
035 |a (DE-627)337478287 
035 |a (DE-599)GBV337478287 
035 |a (OCoLC)845464146 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a ger 
044 |c XA-DE 
084 |a 27  |2 sdnb 
084 |a 31.46  |2 bkl 
100 1 |a Abels, Otto  |e verfasserin  |4 aut 
245 1 0 |a Spektraltheorie gewöhnlicher linearer Differentialoperatoren vierter Ordnung  |c Otto Abels 
264 1 |c 2001 
300 |a Online-Ressource (PostScript-Datei: 98 S., 222,72 kB) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
502 |a Osnabrück, Univ., Diss., 2001 
520 |a In this thesis the spectral properties of differential operators generated by the formally self-adjoint differential expression are investigated. The main tools to be used are the theory of asymptotic integration and the Titchmarsh--Weyl M-matrix. Subject to certain regularity conditions on the coefficients asymptotic integration leads to estimates for the eigenfunctions of the corresponding differential equation . According to the theory of asymptotic integration the regularity conditions combine smoothness with decay, i.e. admissible coefficients are (in an appropriate sense) either short range or slowly varying. Knowledge of the asymptotics of the solutions will then be used to determine the deficiency index and to derive properties of the M-matrix which is closely related to the spectral measure of an associated self-adjoint realization. Consequently we can compute the multiplicity of the spectrum, locate the absolutely continuous spectrum and give conditions for the singular continuous spectrum to be empty. This generalizes classical results on second order operators. 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
689 0 0 |D s  |0 (DE-588)4167718-3  |0 (DE-627)105423114  |0 (DE-576)209910690  |a Linearer gewöhnlicher Differentialoperator  |2 gnd 
689 0 1 |D s  |0 (DE-588)4180810-1  |0 (DE-627)105323055  |0 (DE-576)210000554  |a Selbstadjungierter Operator  |2 gnd 
689 0 2 |D s  |0 (DE-588)4346058-6  |0 (DE-627)155494945  |0 (DE-576)211473987  |a Ordnung 4  |2 gnd 
689 0 3 |D s  |0 (DE-588)4299140-7  |0 (DE-627)104125454  |0 (DE-576)211016020  |a Asymptotische Integration  |2 gnd 
689 0 4 |D s  |0 (DE-588)4656422-6  |0 (DE-627)335585159  |0 (DE-576)21472431X  |a Titchmarsh-Weyl-Theorie  |2 gnd 
689 0 5 |D s  |0 (DE-588)4238469-2  |0 (DE-627)104879270  |0 (DE-576)210413417  |a M-Matrix  |2 gnd 
689 0 |5 DE-101 
751 |a Osnabrück  |4 uvp 
776 0 8 |i Ausdruck  |a Abels, Otto  |t Spektraltheorie gewöhnlicher linearer Differentialoperatoren vierter Ordnung  |d 2001  |h 98 S.  |w (DE-627)332119513 
856 4 0 |u https://repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2001072513  |x Resolving-System  |3 Volltext 
856 4 0 |u http://repositorium.uni-osnabrueck.de/bitstream/urn:nbn:de:gbv:700-2001072513/2/E-Diss148_thesis.ps.gz  |x Resolving-System  |3 Volltext 
856 4 0 |u http://webdoc.sub.gwdg.de/ebook/dissts/Osnabrueck/Abels2001.gz  |x Verlag  |3 Volltext 
856 4 0 |u http://d-nb.info/962853291  |x Verlag  |3 Volltext 
856 4 0 |u http://nbn-resolving.de/urn:nbn:de:gbv:700-2001072513  |x Resolving-System  |3 Volltext 
856 7 |u urn:nbn:de:gbv:700-2001072513  |2 urn 
912 |a GBV_ILN_20 
912 |a SYSFLAG_1 
912 |a GBV_KXP 
912 |a SSG-OPC-MAT 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_30 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_110 
912 |a GBV_ILN_130 
936 b k |a 31.46  |j Funktionalanalysis  |0 (DE-627)106411217 
951 |a BO 
980 |2 20  |1 01  |b 653160631  |x 0084  |y x  |z 22-06-04 
980 |2 21  |1 01  |b 659586401  |x 0046  |y z  |z 13-08-04 
980 |2 22  |1 01  |b 554864371  |h SUBolrd  |x 0018  |y xu  |z 08-05-02 
980 |2 30  |1 01  |b 719661641  |x 0104  |y z  |z 14-05-05 
980 |2 40  |1 01  |b 578513609  |x 0007  |y ksn  |z 16-11-02 
980 |2 60  |1 01  |b 578513617  |x 0705  |y z  |z 16-11-02 
980 |2 110  |1 01  |b 71966165X  |x 3110  |y xz  |z 14-05-05 
980 |2 130  |1 01  |b 683733303  |x 0700  |y xb  |z 16-11-04 
981 |2 20  |1 01  |r http://d-nb.info/962853291 
981 |2 21  |1 01  |r http://d-nb.info/962853291/34 
981 |2 22  |1 01  |r http://nbn-resolving.de/urn:nbn:de:gbv:700-2001072513 
981 |2 30  |1 01  |r http://deposit.ddb.de/cgi-bin/dokserv?idn=962853291 
981 |2 40  |1 01  |r http://webdoc.sub.gwdg.de/ebook/dissts/Osnabrueck/Abels2001.gz 
981 |2 60  |1 01  |r http://nbn-resolving.de/urn:nbn:de:gbv:700-2001072513 
981 |2 110  |1 01  |r http://d-nb.info/962853291 
981 |2 130  |1 01  |r https://repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2001072513 
981 |2 130  |1 01  |r http://nbn-resolving.de/urn:nbn:de:gbv:700-2001072513 
983 |2 40  |1 00  |8 00  |a E 
983 |2 60  |1 01  |8 10  |a ho 
983 |2 130  |1 01  |8 00  |a TJW 
985 |2 21  |1 01  |a OLRD 
985 |2 30  |1 01  |a OLRD 
985 |2 60  |1 01  |a OLRD 
985 |2 110  |1 01  |a OLRD 
995 |2 22  |1 01  |a SUBolrd 
998 |2 40  |1 01  |0 2002-11  |a 9